-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathoptimizer.py
25 lines (21 loc) · 1.3 KB
/
optimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
class Optimizer:
def update(self, weight: float, gradient: float, learning_rate: float, layer_index: int = None, neuron_index: int = None, weight_index: int = None) -> float:
raise NotImplementedError
class SGD(Optimizer):
def update(self, weight: float, gradient: float, learning_rate: float, layer_index: int = None, neuron_index: int = None, weight_index: int = None) -> float:
return weight - learning_rate * gradient
class BGD(Optimizer):
def __init__(self):
self.accumulated_gradients = {}
def accumulate_gradient(self, layer_index: int, neuron_index: int, weight_index: int, gradient: float):
key = (layer_index, neuron_index, weight_index)
if key not in self.accumulated_gradients:
self.accumulated_gradients[key] = 0.0
self.accumulated_gradients[key] += gradient
def update(self, weight: float, gradient: float, learning_rate: float, layer_index: int = None, neuron_index: int = None, weight_index: int = None) -> float:
key = (layer_index, neuron_index, weight_index)
if key in self.accumulated_gradients:
avg_gradient = self.accumulated_gradients[key] / len(self.accumulated_gradients)
weight -= learning_rate * avg_gradient
del self.accumulated_gradients[key]
return weight