|
| 1 | +from __future__ import annotations |
| 2 | + |
| 3 | +import argparse |
| 4 | +import os |
| 5 | +import tempfile |
| 6 | +import time |
| 7 | +from typing import NoReturn |
| 8 | + |
| 9 | +from optuna.artifacts import FileSystemArtifactStore |
| 10 | +from optuna.artifacts import upload_artifact |
| 11 | +from optuna_dashboard import register_preference_feedback_component |
| 12 | +from optuna_dashboard.preferential import create_study |
| 13 | +from optuna_dashboard.preferential.samplers.gp import PreferentialGPSampler |
| 14 | +from PIL import Image |
| 15 | +from PIL import ImageEnhance |
| 16 | + |
| 17 | + |
| 18 | +STORAGE_URL = "sqlite:///db.sqlite3" |
| 19 | +artifact_path = os.path.join(os.path.dirname(__file__), "artifact") |
| 20 | +artifact_store = FileSystemArtifactStore(base_path=artifact_path) |
| 21 | +os.makedirs(artifact_path, exist_ok=True) |
| 22 | + |
| 23 | + |
| 24 | +def main() -> NoReturn: |
| 25 | + # Parse command-line arguments. |
| 26 | + parser = argparse.ArgumentParser(description="Optimize image enhancement parameters.") |
| 27 | + parser.add_argument( |
| 28 | + "--image_path", type=str, required=True, help="Path to the input image file." |
| 29 | + ) |
| 30 | + args = parser.parse_args() |
| 31 | + |
| 32 | + # Validate the image path. |
| 33 | + if not os.path.exists(args.image_path): |
| 34 | + raise FileNotFoundError(f"The specified image file does not exist: {args.image_path}") |
| 35 | + |
| 36 | + study = create_study( |
| 37 | + n_generate=4, |
| 38 | + study_name="Preferential Optimization Image Scene", |
| 39 | + storage=STORAGE_URL, |
| 40 | + sampler=PreferentialGPSampler(), |
| 41 | + load_if_exists=True, |
| 42 | + ) |
| 43 | + # Change the component, displayed on the human feedback pages. |
| 44 | + # By default (component_type="note"), the Trial's Markdown note is displayed. |
| 45 | + user_attr_key = "rgb_image" |
| 46 | + register_preference_feedback_component(study, "artifact", user_attr_key) |
| 47 | + image_sample = Image.open(args.image_path) # Use the image path from command-line arguments. |
| 48 | + with tempfile.TemporaryDirectory() as tmpdir: |
| 49 | + while True: |
| 50 | + # If study.should_generate() returns False, |
| 51 | + # the generator waits for human evaluation. |
| 52 | + if not study.should_generate(): |
| 53 | + time.sleep(0.1) # Avoid busy-loop. |
| 54 | + continue |
| 55 | + |
| 56 | + trial = study.ask() |
| 57 | + # 1. Ask new parameters. |
| 58 | + contrast_factor = trial.suggest_float("contrast_factor", 0.0, 2.0) |
| 59 | + brightness_factor = trial.suggest_float("brightness_factor", 0.0, 2.0) |
| 60 | + color_factor = trial.suggest_float("color_factor", 0.0, 2.0) |
| 61 | + sharpness_factor = trial.suggest_float("sharpness_factor", 0.0, 2.0) |
| 62 | + |
| 63 | + # 2. Generate image. |
| 64 | + image_path = os.path.join(tmpdir, f"sample-{trial.number}.png") |
| 65 | + image = image_sample.copy() |
| 66 | + |
| 67 | + image = ImageEnhance.Contrast(image).enhance(contrast_factor) |
| 68 | + image = ImageEnhance.Brightness(image).enhance(brightness_factor) |
| 69 | + image = ImageEnhance.Color(image).enhance(color_factor) |
| 70 | + image = ImageEnhance.Sharpness(image).enhance(sharpness_factor) |
| 71 | + |
| 72 | + image.save(image_path) |
| 73 | + |
| 74 | + # 3. Upload Artifact and set artifact_id to trial.user_attrs["rgb_image"]. |
| 75 | + artifact_id = upload_artifact( |
| 76 | + artifact_store=artifact_store, |
| 77 | + file_path=image_path, |
| 78 | + study_or_trial=trial, |
| 79 | + ) |
| 80 | + trial.set_user_attr(user_attr_key, artifact_id) |
| 81 | + |
| 82 | + |
| 83 | +if __name__ == "__main__": |
| 84 | + main() |
0 commit comments