-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathdual.py
281 lines (245 loc) · 11.4 KB
/
dual.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import pyomo.environ as pe
from pyomo.core.base.block import _BlockData, ScalarBlock
from pyomo.core.base.var import _GeneralVarData, ScalarVar, IndexedVar
from typing import Sequence, Optional, Iterable, List
import math
from pyomo.common.collections import ComponentSet
from pyomo.core.expr.visitor import identify_variables, replace_expressions
from pyomo.core.expr.calculus.diff_with_pyomo import reverse_sd
from pyomo.contrib.appsi.base import PersistentBase
from pyomo.core.base.param import _ParamData
from pyomo.core.base.constraint import _GeneralConstraintData, IndexedConstraint
from .utils import ComponentHasher
from pyomo.core.base.sos import _SOSConstraintData
from pyomo.core.base.objective import _GeneralObjectiveData
from pyomo.repn.standard_repn import generate_standard_repn
from pyomo.contrib.appsi.cmodel import cmodel, cmodel_available
class Dual(PersistentBase):
def __init__(self, fixed_vars: Optional[Iterable[_GeneralVarData]] = None):
super().__init__(only_child_vars=False)
self._dual = ScalarBlock(concrete=True)
self._setup_dual()
self._grad_lag_map = pe.ComponentMap()
self._lagrangian_terms = dict()
if fixed_vars is None:
self._fixed_vars = ComponentSet()
else:
self._fixed_vars = ComponentSet(fixed_vars)
self._old_obj = None
self._old_obj_vars = list()
self._linear_primals = ComponentSet()
def _setup_dual(self):
self._dual.grad_lag_set = pe.Set(dimen=1)
self._dual.eq_dual_set = pe.Set(dimen=1)
self._dual.ineq_dual_set = pe.Set(dimen=1)
self._dual.eq_duals = IndexedVar(self._dual.eq_dual_set)
self._dual.ineq_duals = IndexedVar(self._dual.ineq_dual_set, bounds=(0, None))
self._dual.grad_lag = IndexedConstraint(self._dual.grad_lag_set)
self._dual.objective = pe.Objective(expr=0, sense=pe.maximize)
def _set_dual_obj(self):
new_obj = sum(self._lagrangian_terms.values())
sub_map = dict()
for v in self._linear_primals:
sub_map[id(v)] = 0
new_obj = replace_expressions(new_obj, substitution_map=sub_map)
self._dual.objective.expr = new_obj
def set_instance(self, model):
saved_update_config = self.update_config
self.__init__(fixed_vars=self._fixed_vars)
self.update_config = saved_update_config
self._model = model
if self.use_extensions and cmodel_available:
self._expr_types = cmodel.PyomoExprTypes()
self.add_block(model)
if self._objective is None:
self.set_objective(None)
def dual(self, model: _BlockData):
if model is not self._model:
self._dual = ScalarBlock(concrete=True)
self._setup_dual()
self.set_instance(model)
else:
self.update()
self._set_dual_obj()
return self._dual
def _update_var_bounds(self, v):
v_lb, v_ub = v.bounds
lb_hasher = ComponentHasher(v, 'lb')
ub_hasher = ComponentHasher(v, 'ub')
for v_bound, hasher in [(v_lb, lb_hasher), (v_ub, ub_hasher)]:
if v_bound is None:
if hasher in self._grad_lag_map[v]:
self._grad_lag_map[v].pop(hasher)
del self._dual.ineq_duals[hasher]
self._dual.ineq_dual_set.remove(hasher)
self._lagrangian_terms.pop(hasher)
else:
if hasher not in self._grad_lag_map[v]:
self._dual.ineq_dual_set.add(hasher)
if hasher.bound == 'lb':
e = self._dual.ineq_duals[hasher] * (v_lb - v)
else:
e = self._dual.ineq_duals[hasher] * (v - v_ub)
if hasher in self._grad_lag_map[v]:
self._grad_lag_map[v][hasher] = (reverse_sd(e)[v], True)
self._lagrangian_terms[hasher] = e
else:
self._process_lagrangian_term(e, [v], hasher)
def _add_variables(self, variables: List[_GeneralVarData]):
for v in variables:
if v in self._fixed_vars:
continue
if v.fixed:
continue
self._grad_lag_map[v] = dict()
v_hasher = ComponentHasher(v, None)
self._dual.grad_lag_set.add(v_hasher)
self._dual.grad_lag[v_hasher] = (0, 0)
self._update_var_bounds(v)
self._linear_primals.add(v)
def _remove_variables(self, variables: List[_GeneralVarData]):
for v in variables:
if v in self._fixed_vars:
continue
self._linear_primals.discard(v)
v_hasher = ComponentHasher(v, None)
lb_hasher = ComponentHasher(v, 'lb')
ub_hasher = ComponentHasher(v, 'ub')
if lb_hasher in self._dual.ineq_dual_set:
del self._dual.ineq_duals[lb_hasher]
self._dual.ineq_dual_set.remove(lb_hasher)
self._lagrangian_terms.pop(lb_hasher)
if ub_hasher in self._dual.ineq_dual_set:
del self._dual.ineq_duals[ub_hasher]
self._dual.ineq_dual_set.remove(ub_hasher)
self._lagrangian_terms.pop(ub_hasher)
if v_hasher in self._dual.grad_lag_set:
# the variable may have been removed from these already if it was fixed
# sometime since calling add_variables
del self._dual.grad_lag[v_hasher]
self._dual.grad_lag_set.remove(v_hasher)
self._grad_lag_map.pop(v)
def _regenerate_grad_lag_for_var(self, v):
v_hasher = ComponentHasher(v, None)
new_body = 0
self._linear_primals.add(v)
for c, (der, linear) in self._grad_lag_map[v].items():
new_body += der
if not linear:
self._linear_primals.discard(v)
self._dual.grad_lag[v_hasher] = (new_body, 0)
def _add_params(self, params: List[_ParamData]):
pass
def _remove_params(self, params: List[_ParamData]):
pass
def _process_lagrangian_term(self, expr, variables, c_hasher):
self._lagrangian_terms[c_hasher] = expr
ders = reverse_sd(expr)
vars_in_expr = identify_variables(expr, include_fixed=False)
unfixed_vars_in_expr = [v for v in vars_in_expr if not v.fixed]
orig_values = [v.value for v in unfixed_vars_in_expr]
unfixed_var_set = ComponentSet(unfixed_vars_in_expr)
for v in unfixed_vars_in_expr:
v.fix(0)
for v in variables:
if v in self._fixed_vars:
continue
if v not in unfixed_var_set:
continue
v.unfix()
v_hasher = ComponentHasher(v, None)
orig_body = self._dual.grad_lag[v_hasher].body
new_body = orig_body + ders[v]
self._dual.grad_lag[v_hasher] = (new_body, 0)
repn = generate_standard_repn(expr, quadratic=False)
linear = repn.is_linear()
if not linear:
self._linear_primals.discard(v)
self._grad_lag_map[v][c_hasher] = (ders[v], linear)
v.fix()
for v, val in zip(unfixed_vars_in_expr, orig_values):
v.unfix()
v.value = val
def _add_constraints(self, cons: List[_GeneralConstraintData]):
for c in cons:
if c.equality or (c.lb is not None and c.ub is not None and c.lb == c.ub):
c_hasher = ComponentHasher(c, None)
self._dual.eq_dual_set.add(c_hasher)
e = self._dual.eq_duals[c_hasher] * (c.body - c.lb)
self._process_lagrangian_term(e, self._vars_referenced_by_con[c], c_hasher)
else:
if c.lb is not None:
c_hasher = ComponentHasher(c, 'lb')
self._dual.ineq_dual_set.add(c_hasher)
e = self._dual.ineq_duals[c_hasher] * (c.lb - c.body)
self._process_lagrangian_term(e, self._vars_referenced_by_con[c], c_hasher)
if c.ub is not None:
c_hasher = ComponentHasher(c, 'ub')
self._dual.ineq_dual_set.add(c_hasher)
e = self._dual.ineq_duals[c_hasher] * (c.body - c.ub)
self._process_lagrangian_term(e, self._vars_referenced_by_con[c], c_hasher)
def _removal_helper(self, c_hasher, variables):
if c_hasher in self._dual.eq_dual_set or c_hasher in self._dual.ineq_dual_set:
self._lagrangian_terms.pop(c_hasher)
for v in variables:
if v in self._grad_lag_map:
self._grad_lag_map[v].pop(c_hasher, None)
if c_hasher in self._dual.eq_dual_set:
del self._dual.eq_duals[c_hasher]
self._dual.eq_dual_set.remove(c_hasher)
else:
del self._dual.ineq_duals[c_hasher]
self._dual.ineq_dual_set.remove(c_hasher)
def _remove_constraints(self, cons: List[_GeneralConstraintData]):
affected_variables = ComponentSet()
for c in cons:
for c_hasher in [
ComponentHasher(c, None),
ComponentHasher(c, 'lb'),
ComponentHasher(c, 'ub')
]:
variables = self._vars_referenced_by_con[c]
self._removal_helper(c_hasher, variables)
affected_variables.update(variables)
for v in affected_variables:
if v in self._grad_lag_map:
self._regenerate_grad_lag_for_var(v)
def _add_sos_constraints(self, cons: List[_SOSConstraintData]):
if len(cons) > 0:
raise NotImplementedError('Dual does not support SOS constraints')
def _remove_sos_constraints(self, cons: List[_SOSConstraintData]):
if len(cons) > 0:
raise NotImplementedError('Dual does not support SOS constraints')
def _set_objective(self, obj: _GeneralObjectiveData):
if obj.sense != pe.minimize:
raise NotImplementedError('Dual does not support maximization problems yet')
if self._old_obj is not None:
old_hasher = ComponentHasher(self._old_obj, None)
self._lagrangian_terms.pop(old_hasher)
for v in self._old_obj_vars:
if v in self._grad_lag_map:
self._grad_lag_map[v].pop(ComponentHasher(self._old_obj, None), None)
self._regenerate_grad_lag_for_var(v)
hasher = ComponentHasher(obj, None)
e = obj.expr
self._lagrangian_terms[hasher] = e
self._process_lagrangian_term(e, self._vars_referenced_by_obj, hasher)
self._old_obj = obj
self._old_obj_vars = self._vars_referenced_by_obj
def _update_variables(self, variables: List[_GeneralVarData]):
for v in variables:
if v in self._fixed_vars:
continue
if v.fixed:
self._remove_variables([v])
else:
if v in self._grad_lag_map:
self._update_var_bounds(v)
self._regenerate_grad_lag_for_var(v)
else:
# the variable was fixed but is now unfixed
# the persistent base class will remove and add any
# constraints that involve this variable
self._add_variables([v])
def update_params(self):
pass