|
| 1 | +import os |
| 2 | +from pathlib import Path |
| 3 | + |
| 4 | +import cv2 |
| 5 | +import numpy as np |
| 6 | +import yaml |
| 7 | + |
| 8 | + |
| 9 | +class ImageRectifier: |
| 10 | + def __init__(self, calib_file_path): |
| 11 | + # Load the YAML file |
| 12 | + with open(calib_file_path, "r") as file: |
| 13 | + calib_data = yaml.safe_load(file) |
| 14 | + |
| 15 | + # Restructure the YAML data |
| 16 | + camera_model = calib_data["sensor"]["camera_model"] |
| 17 | + cameras = calib_data["sensor"]["cameras"] |
| 18 | + |
| 19 | + # Create the desired dictionary structure |
| 20 | + self.sensor_dict = {"camera_model": camera_model, "cameras": {camera["label"]: camera for camera in cameras}} |
| 21 | + self._init_rectification_maps() |
| 22 | + |
| 23 | + def _init_rectification_maps(self): |
| 24 | + for cam_label, cam_data in self.sensor_dict["cameras"].items(): |
| 25 | + balance = 0.0 |
| 26 | + scale_factor = 1.0 |
| 27 | + new_width = int(cam_data["image_width"] * scale_factor) |
| 28 | + new_height = int(cam_data["image_height"] * scale_factor) |
| 29 | + new_size = (new_width, new_height) |
| 30 | + |
| 31 | + new_K = cv2.fisheye.estimateNewCameraMatrixForUndistortRectify( |
| 32 | + convert_to_intrinsic_matrix(np.array(cam_data["intrinsics"])), |
| 33 | + np.array(cam_data["extra_params"]), |
| 34 | + (new_width, new_height), |
| 35 | + np.eye(3), |
| 36 | + balance=balance, |
| 37 | + new_size=new_size, |
| 38 | + ) |
| 39 | + print(f"{cam_label} has:") |
| 40 | + print(new_K) |
| 41 | + |
| 42 | + self.sensor_dict["cameras"][cam_label]["map1"], self.sensor_dict["cameras"][cam_label]["map2"] = ( |
| 43 | + cv2.fisheye.initUndistortRectifyMap( |
| 44 | + convert_to_intrinsic_matrix(np.array(cam_data["intrinsics"])), |
| 45 | + np.array(cam_data["extra_params"]), |
| 46 | + np.eye(3), |
| 47 | + new_K, |
| 48 | + new_size, |
| 49 | + cv2.CV_32FC1, |
| 50 | + ) |
| 51 | + ) |
| 52 | + self.sensor_dict["cameras"][cam_label]["rectified_width"] = new_width |
| 53 | + self.sensor_dict["cameras"][cam_label]["rectified_height"] = new_height |
| 54 | + |
| 55 | + print( |
| 56 | + f"Camera {cam_label} rectified image size: Width={new_width}, Height={new_height}, please copy this value \n" |
| 57 | + ) |
| 58 | + print("") |
| 59 | + |
| 60 | + def process_image(self, image, output_path, cam_label): |
| 61 | + # Remap the image |
| 62 | + rectified = cv2.remap( |
| 63 | + image, |
| 64 | + self.sensor_dict["cameras"][cam_label]["map1"], |
| 65 | + self.sensor_dict["cameras"][cam_label]["map2"], |
| 66 | + interpolation=cv2.INTER_LINEAR, |
| 67 | + borderMode=cv2.BORDER_CONSTANT, |
| 68 | + ) |
| 69 | + |
| 70 | + # Save the rectified image |
| 71 | + os.makedirs(os.path.dirname(output_path), exist_ok=True) |
| 72 | + cv2.imwrite(str(output_path), rectified) |
| 73 | + |
| 74 | + def process_directory(self, input_dir, output_dir): |
| 75 | + input_path = Path(input_dir) |
| 76 | + output_path = Path(output_dir) |
| 77 | + output_path.mkdir(parents=True, exist_ok=True) |
| 78 | + for cam_label, cam_data in self.sensor_dict["cameras"].items(): |
| 79 | + path_parts = cam_data["topic"].split("/", 1) |
| 80 | + img_subfolder = path_parts[0] + path_parts[1].replace("/", "_") |
| 81 | + for img_path in input_path.rglob("*"): |
| 82 | + if img_path.parent == img_subfolder: |
| 83 | + image = cv2.imread(str(img_path)) |
| 84 | + if image is None: |
| 85 | + print(f"Failed to read image: {img_path}") |
| 86 | + continue |
| 87 | + rel_path = img_path.relative_to(input_path) |
| 88 | + output_file = output_path / rel_path |
| 89 | + self.process_image(image, output_file, cam_label) |
| 90 | + # print(f"Processed: {img_path.name}") |
| 91 | + |
| 92 | + |
| 93 | +def convert_to_intrinsic_matrix(intrinsics): |
| 94 | + if len(intrinsics) != 4: |
| 95 | + raise ValueError("Intrinsics must be a list or array with exactly 4 elements: [fx, fy, cx, cy].") |
| 96 | + fx, fy, cx, cy = intrinsics |
| 97 | + intrinsic_matrix = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]], dtype=np.float64) |
| 98 | + return intrinsic_matrix |
| 99 | + |
| 100 | + |
| 101 | +if __name__ == "__main__": |
| 102 | + """ |
| 103 | + Args: |
| 104 | + - calib_file_path: base calibration file |
| 105 | + - distorted_image_input_path: distorted images folder directory |
| 106 | + - rectified_image_output_path: output folder name to save undistorted rectified images |
| 107 | + """ |
| 108 | + |
| 109 | + calib_file_path = "./config/sensor.yaml" |
| 110 | + distorted_image_input_path = "/data/2024-03-12-keble-college-01/images" |
| 111 | + rectified_image_output_path = "/data/2024-03-12-keble-college-01/test/images_rectified" |
| 112 | + |
| 113 | + # Initialize rectifier |
| 114 | + rectifier = ImageRectifier(calib_file_path) |
| 115 | + rectifier.process_directory(distorted_image_input_path, rectified_image_output_path) |
| 116 | + print("Please copy and paste output rectified intrinsics") |
0 commit comments