-
Notifications
You must be signed in to change notification settings - Fork 138
/
Copy pathpositive_variety.jl
73 lines (58 loc) · 3.13 KB
/
positive_variety.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
@doc raw"""
positive_tropical_variety(I::MPolyIdeal,nu::TropicalSemiringMap)
Return the positive tropical variety of `I` as a `PolyhedralComplex` as per the definition in [SW05](@cite). Assumes that `I` is generated either by binomials or by linear polynomials and that `I` is defined either over
(a) the rational numbers and that `nu` encodes the trivial valuation,
(b) the rational function field over the rational numbers and that `nu` encodes the t-adic valuation.
# Examples
```jldoctest
julia> K,t = rational_function_field(QQ,"t")
(Rational function field over QQ, t)
julia> C = matrix(K,[[-3*t,1*t,-1*t,-2*t,2*t],[-1*t,1*t,-1*t,-1*t,1*t]])
[-3*t t -t -2*t 2*t]
[ -t t -t -t t]
julia> R,x = polynomial_ring(K,ncols(C))
(Multivariate polynomial ring in 5 variables over K, AbstractAlgebra.Generic.MPoly{AbstractAlgebra.Generic.RationalFunctionFieldElem{QQFieldElem, QQPolyRingElem}}[x1, x2, x3, x4, x5])
julia> nu = tropical_semiring_map(K,t)
Map into Min tropical semiring encoding the t-adic valuation on Rational function field over QQ
julia> I = ideal(C*gens(R))
Ideal generated by
-3*t*x1 + t*x2 - t*x3 - 2*t*x4 + 2*t*x5
-t*x1 + t*x2 - t*x3 - t*x4 + t*x5
julia> TropPlusI = positive_tropical_variety(I,nu)
Min tropical variety
```
"""
function positive_tropical_variety(I::MPolyIdeal,nu::TropicalSemiringMap)
if all(isequal(2),length.(gens(I)))
if all(isequal(-1),[prod([sign(c) for c in coefficients(g)]) for g in gens(I)])
# binomial ideal positive, return regular tropical variety
return tropical_variety_binomial(I,nu)
else
# binomial ideal not positive, return empty polyhedral complex in the correct ambient dimension
return polyhedral_complex(IncidenceMatrix(zeros(Int,0,0)),zero_matrix(QQ,0,ambient_dim(TropL)))
end
end
if all(isequal(1),total_degree.(gens(I)))
# Construct the tropicalization of I
TropL = tropical_linear_space(I,nu)
# find maximal polyhedra belonging to the positive part
# we check containment in the positive part by testing the initial ideal w.r.t. a relative interior point
positivePolyhedra = Polyhedron{QQFieldElem}[sigma for sigma in maximal_polyhedra(TropL) if is_initial_positive(I,nu,relative_interior_point(sigma))]
if isempty(positivePolyhedra)
# if there are no positive polyhedra,
# return empty polyhedral complex in the correct ambient dimension
return polyhedral_complex(IncidenceMatrix(zeros(Int,0,0)),zero_matrix(QQ,0,ambient_dim(TropL)))
end
Sigma = polyhedral_complex(positivePolyhedra)
mult = ones(ZZRingElem, n_maximal_polyhedra(Sigma))
minOrMax = convention(nu)
return tropical_variety(Sigma,mult,minOrMax)
end
error("input ideal not supported")
end
function is_initial_positive(I::MPolyIdeal, nu::TropicalSemiringMap, w::AbstractVector)
inI = initial(I,nu,w)
G = groebner_basis(inI; complete_reduction=true)
# the Groebner basis is binomial, check binomials have alternating signs
return all(isequal(-1),[prod([sign(c) for c in coefficients(g)]) for g in G])
end