Skip to content

why number of classes are not the same in train and test? #40

@marzi-heidari

Description

@marzi-heidari

I used to believe in k-way-n-shot few-shot learning, k and n (number of classes and samples from each class respectively) must be the same in train and test phases. But you uses different numbers in the train and test phase (60 for train and 5 for test):

parser.add_argument('--dataset')
parser.add_argument('--distance', default='l2')
parser.add_argument('--n-train', default=1, type=int)
parser.add_argument('--n-test', default=1, type=int)
parser.add_argument('--k-train', default=60, type=int)
parser.add_argument('--k-test', default=5, type=int)
parser.add_argument('--q-train', default=5, type=int)
parser.add_argument('--q-test', default=1, type=int)

Are we allowed to do so?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions