|
32 | 32 | "metadata": {},
|
33 | 33 | "outputs": [],
|
34 | 34 | "source": [
|
35 |
| - "data = osyris.Dataset(71, scale=\"au\", path=\"osyrisdata\").load()" |
| 35 | + "path = \"osyrisdata/starformation\"\n", |
| 36 | + "data = osyris.Dataset(8, scale=\"au\", path=path).load()" |
36 | 37 | ]
|
37 | 38 | },
|
38 | 39 | {
|
|
62 | 63 | "\n",
|
63 | 64 | "It is possible to load only a subset of the cells, by using custom functions to perform the selection.\n",
|
64 | 65 | "\n",
|
65 |
| - "As an example, to load all the cells with $\\rho > 10^{-13}~{\\rm g~cm}^{-3}$, we use a selection criterion" |
| 66 | + "As an example, to load all the cells with $\\rho > 10^{-15}~{\\rm g~cm}^{-3}$, we use a selection criterion" |
66 | 67 | ]
|
67 | 68 | },
|
68 | 69 | {
|
|
71 | 72 | "metadata": {},
|
72 | 73 | "outputs": [],
|
73 | 74 | "source": [
|
74 |
| - "data = osyris.Dataset(71, scale=\"au\", path=\"osyrisdata\").load(\n", |
75 |
| - " select={\"hydro\": {\"density\": lambda d : d > 1.0e-13 * osyris.units('g/cm**3')}})" |
| 75 | + "data = osyris.Dataset(8, scale=\"au\", path=path).load(\n", |
| 76 | + " select={\"hydro\": {\"density\": lambda d : d > 1.0e-15 * osyris.units('g/cm**3')}})" |
76 | 77 | ]
|
77 | 78 | },
|
78 | 79 | {
|
|
105 | 106 | "metadata": {},
|
106 | 107 | "outputs": [],
|
107 | 108 | "source": [
|
108 |
| - "data = osyris.Dataset(71, scale=\"au\", path=\"osyrisdata\").load(\n", |
109 |
| - " select={\"hydro\": {\"density\": lambda d : d > 1.0e-13 * osyris.units('g/cm**3')},\n", |
110 |
| - " \"amr\": {\"xyz_x\": lambda x : x > 5500. * osyris.units('au')}})" |
| 109 | + "data = osyris.Dataset(8, scale=\"au\", path=path).load(\n", |
| 110 | + " select={\"hydro\": {\"density\": lambda d : d > 1.0e-16 * osyris.units('g/cm**3')},\n", |
| 111 | + " \"amr\": {\"xyz_x\": lambda x : x > 1500. * osyris.units('au')}})" |
111 | 112 | ]
|
112 | 113 | },
|
113 | 114 | {
|
|
117 | 118 | "outputs": [],
|
118 | 119 | "source": [
|
119 | 120 | "osyris.plane({\"data\": data[\"hydro\"][\"density\"], \"norm\": \"log\"},\n",
|
120 |
| - " dx=200 * osyris.units('au'),\n", |
| 121 | + " dx=1000 * osyris.units('au'),\n", |
121 | 122 | " origin=data[\"amr\"][\"xyz\"][np.argmax(data[\"hydro\"][\"density\"]).values],\n",
|
122 | 123 | " direction='z')"
|
123 | 124 | ]
|
|
137 | 138 | "metadata": {},
|
138 | 139 | "outputs": [],
|
139 | 140 | "source": [
|
140 |
| - "data = osyris.Dataset(71, scale=\"au\", path=\"osyrisdata\").load(\n", |
| 141 | + "data = osyris.Dataset(8, scale=\"au\", path=path).load(\n", |
141 | 142 | " select={\"hydro\": {\"density\": False}})\n",
|
142 | 143 | "\"density\" in data[\"hydro\"]"
|
143 | 144 | ]
|
|
158 | 159 | "metadata": {},
|
159 | 160 | "outputs": [],
|
160 | 161 | "source": [
|
161 |
| - "data = osyris.Dataset(71, scale=\"au\", path=\"osyrisdata\").load(\n", |
| 162 | + "data = osyris.Dataset(8, scale=\"au\", path=path).load(\n", |
162 | 163 | " select={\"hydro\": False})\n",
|
163 | 164 | "data"
|
164 | 165 | ]
|
|
184 | 185 | "metadata": {},
|
185 | 186 | "outputs": [],
|
186 | 187 | "source": [
|
187 |
| - "data = osyris.Dataset(71, scale=\"au\", path=\"osyrisdata\").load(\n", |
188 |
| - " select={\"amr\": {\"level\": lambda l : l < 10}})\n", |
| 188 | + "data = osyris.Dataset(8, scale=\"au\", path=path).load(\n", |
| 189 | + " select={\"amr\": {\"level\": lambda l : l < 7}})\n", |
189 | 190 | "data[\"amr\"][\"level\"]"
|
190 | 191 | ]
|
191 | 192 | },
|
192 | 193 | {
|
193 | 194 | "cell_type": "markdown",
|
194 | 195 | "metadata": {},
|
195 | 196 | "source": [
|
196 |
| - "will only read levels 1 to 9, while" |
| 197 | + "will only read levels 1 to 6, while" |
197 | 198 | ]
|
198 | 199 | },
|
199 | 200 | {
|
|
202 | 203 | "metadata": {},
|
203 | 204 | "outputs": [],
|
204 | 205 | "source": [
|
205 |
| - "data = osyris.Dataset(71, scale=\"au\", path=\"osyrisdata\").load(\n", |
206 |
| - " select={\"amr\": {\"level\": lambda l : np.logical_and(l > 9, l < 13)}})\n", |
| 206 | + "data = osyris.Dataset(8, scale=\"au\", path=path).load(\n", |
| 207 | + " select={\"amr\": {\"level\": lambda l : np.logical_and(l > 5, l < 9)}})\n", |
207 | 208 | "data[\"amr\"][\"level\"]"
|
208 | 209 | ]
|
209 | 210 | },
|
210 | 211 | {
|
211 | 212 | "cell_type": "markdown",
|
212 | 213 | "metadata": {},
|
213 | 214 | "source": [
|
214 |
| - "will read levels 1 to 12, but will then discard all cells with `level` < 10.\n", |
| 215 | + "will read levels 1 to 8, but will then discard all cells with `level` < 6.\n", |
215 | 216 | "\n",
|
216 | 217 | "### Loading only selected CPU outputs\n",
|
217 | 218 | "\n",
|
|
224 | 225 | "metadata": {},
|
225 | 226 | "outputs": [],
|
226 | 227 | "source": [
|
227 |
| - "data = osyris.Dataset(71, scale=\"au\", path=\"osyrisdata\").load(\n", |
| 228 | + "data = osyris.Dataset(8, scale=\"au\", path=path).load(\n", |
228 | 229 | " cpu_list=[1, 2, 10, 4, 5])"
|
229 | 230 | ]
|
230 | 231 | },
|
|
235 | 236 | "outputs": [],
|
236 | 237 | "source": [
|
237 | 238 | "osyris.plane({\"data\": data[\"hydro\"][\"density\"], \"norm\": \"log\"},\n",
|
238 |
| - " dx=400 * osyris.units(\"au\"),\n", |
| 239 | + " dx=2000 * osyris.units(\"au\"),\n", |
239 | 240 | " origin=data[\"amr\"][\"xyz\"][np.argmax(data[\"hydro\"][\"density\"]).values],\n",
|
240 | 241 | " direction='z')"
|
241 | 242 | ]
|
|
0 commit comments