-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathExceptions.v
221 lines (184 loc) · 5.76 KB
/
Exceptions.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
(** Calculation for arithmetic + exceptions. *)
Require Import List.
Require Import Tactics.
(** * Syntax *)
Inductive Expr : Set :=
| Val : nat -> Expr
| Add : Expr -> Expr -> Expr
| Throw : Expr
| Catch : Expr -> Expr -> Expr.
(** * Semantics *)
Fixpoint eval (x: Expr) : option nat :=
match x with
| Val n => Some n
| Add x1 x2 => match eval x1 with
| Some n => match eval x2 with
| Some m => Some (n + m)
| None => None
end
| None => None
end
| Throw => None
| Catch x1 x2 => match eval x1 with
| Some n => Some n
| None => eval x2
end
end.
(** * Compiler *)
Inductive Code : Set :=
| PUSH : nat -> Code -> Code
| ADD : Code -> Code
| FAIL : Code
| UNMARK : Code -> Code
| MARK : Code -> Code -> Code
| HALT : Code.
Fixpoint comp' (x : Expr) (c : Code) : Code :=
match x with
| Val n => PUSH n c
| Add x1 x2 => comp' x1 (comp' x2 (ADD c))
| Throw => FAIL
| Catch x1 x2 => MARK (comp' x2 c) (comp' x1 (UNMARK c))
end.
Definition comp (x : Expr) : Code := comp' x HALT.
(** * Virtual Machine *)
Inductive Elem : Set :=
| VAL : nat -> Elem
| HAN : Code -> Elem
.
Definition Stack : Set := list Elem.
Inductive Conf : Set :=
| conf : Code -> Stack -> Conf
| fail : Stack -> Conf.
Notation "⟨ x , y ⟩" := (conf x y).
Notation "⟪ x ⟫" := (fail x ).
Reserved Notation "x ==> y" (at level 80, no associativity).
Inductive VM : Conf -> Conf -> Prop :=
| vm_push n c s : ⟨PUSH n c, s⟩ ==> ⟨ c , VAL n :: s ⟩
| vm_add c s m n : ⟨ADD c, VAL m :: VAL n :: s⟩ ==> ⟨c, VAL (n + m) :: s⟩
| vm_fail_val n s : ⟪VAL n :: s ⟫ ==> ⟪s⟫
| vm_fail s : ⟨ FAIL, s⟩ ==> ⟪s⟫
| vm_fail_han c s : ⟪HAN c :: s ⟫ ==> ⟨c, s⟩
| vm_unmark c n h s : ⟨UNMARK c, VAL n :: HAN h :: s⟩ ==> ⟨c, VAL n :: s⟩
| vm_mark c h s : ⟨MARK h c, s⟩ ==> ⟨c, HAN h :: s⟩
where "x ==> y" := (VM x y).
#[export]
Hint Constructors VM : core.
(** * Calculation *)
(** Boilerplate to import calculation tactics *)
Module VM <: Preorder.
Definition Conf := Conf.
Definition VM := VM.
End VM.
Module VMCalc := Calculation VM.
Import VMCalc.
(** Specification of the compiler *)
Theorem spec x c s : ⟨comp' x c, s⟩
=>> match eval x with
| Some n => ⟨c , VAL n :: s⟩
| None => ⟪ s ⟫
end.
(** Setup the induction proof *)
Proof.
intros.
generalize dependent c.
generalize dependent s.
induction x;intros.
(** Calculation of the compiler *)
(** - [x = Val n]: *)
begin
⟨c, VAL n :: s⟩.
<== { apply vm_push }
⟨PUSH n c, s⟩.
[].
(** - [x = Add x1 x2]: *)
begin
(match eval x1 with
| Some m => match eval x2 with
| Some n => ⟨ c, VAL (m + n) :: s ⟩
| None => ⟪ s ⟫
end
| None => ⟪ s ⟫
end).
<<= { apply vm_add }
(match eval x1 with
| Some m => match eval x2 with
| Some n => ⟨ ADD c, VAL n :: VAL m :: s ⟩
| None => ⟪ s ⟫
end
| None => ⟪ s ⟫
end).
<<= { apply vm_fail_val }
(match eval x1 with
| Some m => match eval x2 with
| Some n => ⟨ ADD c, VAL n :: VAL m :: s ⟩
| None => ⟪ VAL m :: s ⟫
end
| None => ⟪ s ⟫
end).
<<= { apply IHx2 }
(match eval x1 with
| Some m => ⟨ comp' x2 (ADD c), VAL m :: s ⟩
| None => ⟪ s ⟫
end).
<<= { apply IHx1 }
⟨ comp' x1 (comp' x2 (ADD c)), s ⟩.
[].
(** - [e = Throw]: *)
begin
⟪s⟫.
<== { apply vm_fail }
⟨ FAIL, s⟩.
[].
(** - [e = Catch x1 x2]: *)
begin
(match eval x1 with
| Some m => ⟨ c, VAL m :: s⟩
| None => match eval x2 with
| Some n => ⟨c, VAL n :: s⟩
| None => ⟪s⟫
end
end).
<<= { apply IHx2 }
(match eval x1 with
| Some m => ⟨ c, VAL m :: s⟩
| None => ⟨comp' x2 c, s⟩
end).
<<= { apply vm_fail_han }
(match eval x1 with
| Some m => ⟨ c, VAL m :: s⟩
| None => ⟪ HAN (comp' x2 c) :: s⟫
end).
<<= { apply vm_unmark }
(match eval x1 with
| Some m => ⟨ UNMARK c, VAL m :: HAN (comp' x2 c) :: s⟩
| None => ⟪ HAN (comp' x2 c) :: s⟫
end).
<<= { apply IHx1 }
⟨ comp' x1 (UNMARK c), HAN (comp' x2 c) :: s⟩.
<<= { apply vm_mark }
⟨ MARK (comp' x2 c) (comp' x1 (UNMARK c)), s⟩.
[].
Qed.
(** * Soundness *)
(** Since the VM is defined as a small step operational semantics, we
have to prove that the VM is deterministic and does not get stuck in
order to derive soundness from the above theorem. *)
Lemma determ_vm : determ VM.
intros C C1 C2 V. induction V; intro V'; inversion V'; subst; reflexivity.
Qed.
Lemma term_vm x : ~ (exists C, match x with
| Some n => ⟨HALT , VAL n :: nil⟩
| None => ⟪nil⟫
end ==> C).
Proof.
destruct x; intro Contra; destruct Contra; subst; inversion H.
Qed.
Theorem sound x C : ⟨comp x, nil⟩ =>>! C -> C = match eval x with
| Some n => ⟨HALT , VAL n :: nil⟩
| None => ⟪nil⟫
end.
Proof.
intros.
pose (spec x HALT nil) as H'. unfold comp in *. pose (determ_trc determ_vm) as D.
unfold determ in D. eapply D. apply H. split. apply H'. apply term_vm.
Qed.