-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathExceptionsTwoCont.v
201 lines (162 loc) · 5.12 KB
/
ExceptionsTwoCont.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
(** Calculation for arithmetic + exceptions with two continuations. *)
Require Import List.
Require Import Tactics.
(** * Syntax *)
Inductive Expr : Set :=
| Val : nat -> Expr
| Add : Expr -> Expr -> Expr
| Throw : Expr
| Catch : Expr -> Expr -> Expr.
(** * Semantics *)
Fixpoint eval (x: Expr) : option nat :=
match x with
| Val n => Some n
| Add x1 x2 => match eval x1 with
| Some n => match eval x2 with
| Some m => Some (n + m)
| None => None
end
| None => None
end
| Throw => None
| Catch x1 x2 => match eval x1 with
| Some n => Some n
| None => eval x2
end
end.
(** * Compiler *)
Inductive Code : Set :=
| PUSH : nat -> Code -> Code
| ADD : Code -> Code
| POP : Code -> Code
| HALT : Code.
Fixpoint comp' (x : Expr) (sc : Code) (fc : Code) : Code :=
match x with
| Val n => PUSH n sc
| Add x y => comp' x (comp' y (ADD sc) (POP fc)) fc
| Throw => fc
| Catch x1 x2 => comp' x1 sc (comp' x2 sc fc)
end.
Definition comp (x : Expr) : Code := comp' x HALT HALT.
(** * Virtual Machine *)
Inductive Elem : Set :=
| VAL : nat -> Elem
.
Definition Stack : Set := list Elem.
Inductive Conf : Set :=
| conf : Code -> Stack -> Conf.
Notation "⟨ x , y ⟩" := (conf x y).
Reserved Notation "x ==> y" (at level 80, no associativity).
Inductive VM : Conf -> Conf -> Prop :=
| vm_push n c s : ⟨PUSH n c, s⟩ ==> ⟨ c , VAL n :: s ⟩
| vm_add c s m n : ⟨ADD c, VAL m :: VAL n :: s⟩ ==> ⟨c, VAL (n + m) :: s⟩
| vm_pop c n s : ⟨POP c, VAL n :: s⟩ ==> ⟨c, s⟩
where "x ==> y" := (VM x y).
#[export]
Hint Constructors VM : core.
(** * Calculation *)
(** Boilerplate to import calculation tactics *)
Module VM <: Preorder.
Definition Conf := Conf.
Definition VM := VM.
End VM.
Module VMCalc := Calculation VM.
Import VMCalc.
(** Specification of the compiler *)
Theorem spec x sc fc s : ⟨comp' x sc fc, s⟩
=>> match eval x with
| Some n => ⟨sc , VAL n :: s⟩
| None => ⟨fc , s⟩
end.
(** Setup the induction proof *)
Proof.
intros.
generalize dependent sc.
generalize dependent fc.
generalize dependent s.
induction x;intros.
(** Calculation of the compiler *)
(** - [x = Val n]: *)
begin
⟨sc, VAL n :: s⟩.
<== { apply vm_push }
⟨PUSH n sc, s⟩.
[].
(** - [x = Add x1 x2]: *)
begin
(match eval x1 with
| Some m => match eval x2 with
| Some n => ⟨ sc, VAL (m + n) :: s ⟩
| None => ⟨ fc, s ⟩
end
| None => ⟨ fc, s ⟩
end).
<<= { apply vm_add }
(match eval x1 with
| Some m => match eval x2 with
| Some n => ⟨ ADD sc, VAL n :: VAL m :: s ⟩
| None => ⟨ fc, s ⟩
end
| None => ⟨ fc, s ⟩
end).
<<= { apply vm_pop }
(match eval x1 with
| Some m => match eval x2 with
| Some n => ⟨ ADD sc, VAL n :: VAL m :: s ⟩
| None => ⟨ POP fc, VAL m :: s ⟩
end
| None => ⟨ fc, s ⟩
end).
<<= { apply IHx2 }
(match eval x1 with
| Some m => ⟨ (comp' x2 (ADD sc) (POP fc)), VAL m :: s⟩
| None => ⟨ fc, s ⟩
end).
<<= { apply IHx1 }
⟨ comp' x1 (comp' x2 (ADD sc) (POP fc)) fc, s ⟩.
[].
(** - [x = Throw]: *)
begin
⟨ fc, s⟩.
[].
(** - [x = Catch x1 x2]: *)
begin
(match eval x1 with
| Some m => ⟨ sc, VAL m :: s⟩
| None => match eval x2 with
| Some n => ⟨sc, VAL n :: s⟩
| None => ⟨fc, s⟩
end
end).
<<= { apply IHx2 }
(match eval x1 with
| Some m => ⟨ sc, VAL m :: s⟩
| None => ⟨comp' x2 sc fc, s⟩
end).
<<= { apply IHx1 }
⟨ comp' x1 sc (comp' x2 sc fc) , s⟩.
[].
Qed.
(** * Soundness *)
(** Since the VM is defined as a small step operational semantics, we
have to prove that the VM is deterministic and does not get stuck in
order to derive soundness from the above theorem. *)
Lemma determ_vm : determ VM.
intros C C1 C2 V. induction V; intro V'; inversion V'; subst; reflexivity.
Qed.
Lemma term_vm x : ~ (exists C, match x with
| Some n => ⟨HALT , VAL n :: nil⟩
| None => ⟨HALT , nil⟩
end ==> C).
Proof.
destruct x; intro Contra; destruct Contra; subst; inversion H.
Qed.
Theorem sound x C : ⟨comp x, nil⟩ =>>! C -> C = match eval x with
| Some n => ⟨HALT , VAL n :: nil⟩
| None => ⟨HALT , nil⟩
end.
Proof.
intros.
pose (spec x HALT HALT nil) as H'. unfold comp in *. pose (determ_trc determ_vm) as D.
unfold determ in D. eapply D. apply H. split. apply H'. apply term_vm.
Qed.