-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathLambdaExceptions.v
382 lines (332 loc) · 12.7 KB
/
LambdaExceptions.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
(** Calculation of a compiler for the call-by-value lambda calculus +
arithmetic + exceptions. *)
Require Import List.
Require Import ListIndex.
Require Import Tactics.
(** * Syntax *)
Inductive Expr : Set :=
| Val : nat -> Expr
| Add : Expr -> Expr -> Expr
| Throw : Expr
| Catch : Expr -> Expr -> Expr
| Var : nat -> Expr
| Abs : Expr -> Expr
| App : Expr -> Expr -> Expr.
(** * Semantics *)
Inductive Value : Set :=
| Num : nat -> Value
| Clo : Expr -> list Value -> Value.
Definition Env := list Value.
Reserved Notation "x ⇓[ e ] y" (at level 80, no associativity).
Inductive eval : Expr -> Env -> option Value -> Prop :=
| eval_val e n : Val n ⇓[e] Some (Num n)
| eval_add e x y m n : x ⇓[e] m -> y ⇓[e] n
-> Add x y ⇓[e] (match m, n with
| Some (Num m'), Some (Num n') => Some (Num (m' + n'))
| _,_ => None
end )
| eval_throw e : Throw ⇓[e] None
| eval_catch e x y m n : x ⇓[e] m -> y ⇓[e] n
-> Catch x y ⇓[e] (match m with
| None => n
| _ => m
end )
| eval_var e i : Var i ⇓[e] nth e i
| eval_abs e x : Abs x ⇓[e] Some (Clo x e)
| eval_app e x x'' y x' e' y' : x ⇓[e] Some (Clo x' e') -> y ⇓[e] Some y' -> x' ⇓[y' :: e'] x''
-> App x y ⇓[e] x''
| eval_app_fail x x' y y' e : x ⇓[e] x' -> y ⇓[e] y' ->
(x' = None \/ exists n, x' = Some (Num n) \/ y' = None) ->
App x y ⇓[e] None
where "x ⇓[ e ] y" := (eval x e y).
(** * Compiler *)
Inductive Code : Set :=
| PUSH : nat -> Code -> Code
| ADD : Code -> Code
| LOOKUP : nat -> Code -> Code
| RET : Code
| APP : Code -> Code
| ABS : Code -> Code -> Code
| ASSERT_NUM : Code -> Code
| ASSERT_CLO : Code -> Code
| UNMARK : Code -> Code
| MARK : Code -> Code -> Code
| FAIL : Code
| HALT : Code.
Fixpoint comp' (e : Expr) (c : Code) : Code :=
match e with
| Val n => PUSH n c
| Add x y => comp' x (ASSERT_NUM (comp' y (ADD c)))
| Var i => LOOKUP i c
| App x y => comp' x (ASSERT_CLO (comp' y (APP c)))
| Abs x => ABS (comp' x RET) c
| Throw => FAIL
| Catch x y => MARK (comp' y c) (comp' x (UNMARK c))
end.
Definition comp (e : Expr) : Code := comp' e HALT.
(** * Virtual Machine *)
Inductive Value' : Set :=
| Num' : nat -> Value'
| Exc' : Value'
| Clo' : Code -> list Value' -> Value'.
Definition Env' := list Value'.
Inductive Elem : Set :=
| VAL : Value' -> Elem
| HAN : Code -> Elem
| CLO : Code -> Env' -> Elem
.
Definition Stack : Set := list Elem.
Inductive Conf : Set :=
| conf : Code -> Stack -> Env' -> Conf
| fail : Stack -> Env' -> Conf.
Notation "⟨ x , y , e ⟩" := (conf x y e).
Notation "⟪ x , e ⟫" := (fail x e ).
Reserved Notation "x ==> y" (at level 80, no associativity).
Inductive VM : Conf -> Conf -> Prop :=
| vm_push n c s e : ⟨PUSH n c, s, e⟩ ==> ⟨c, VAL (Num' n) :: s, e⟩
| vm_add c m n s e : ⟨ADD c, VAL (Num' n) :: VAL (Num' m) :: s, e⟩
==> ⟨c, VAL (Num'(m + n)) :: s, e⟩
| vm_lookup e i c v s : nth e i = Some v -> ⟨LOOKUP i c, s, e ⟩ ==> ⟨c, VAL v :: s, e ⟩
| vm_lookup_fail e i c s : nth e i = None -> ⟨LOOKUP i c, s, e ⟩ ==> ⟪s, e ⟫
| vm_env v c e e' s : ⟨RET, VAL v :: CLO c e :: s, e'⟩ ==> ⟨c, VAL v :: s, e⟩
| vm_fail_env c e e' s : ⟪CLO c e :: s, e'⟫ ==> ⟪s, e⟫
| vm_app c c' e e' v s : ⟨APP c, VAL v :: VAL (Clo' c' e') :: s, e⟩
==> ⟨c', CLO c e :: s, v :: e'⟩
| vm_abs c c' s e : ⟨ABS c' c, s, e ⟩ ==> ⟨c, VAL (Clo' c' e) :: s, e ⟩
| vm_fail_val s e v : ⟪ VAL v :: s, e ⟫ ==> ⟪ s, e ⟫
| vm_fail_han c s e : ⟪HAN c :: s, e ⟫ ==> ⟨c, s, e⟩
| vm_fail s e : ⟨ FAIL, s, e ⟩ ==> ⟪ s, e ⟫
| vm_add_fail s c c' e e' m : ⟨ADD c, VAL (Clo' c' e') :: VAL (Num' m) :: s, e⟩ ==> ⟪s, e⟫
| vm_unmark c n h s e : ⟨UNMARK c, VAL n :: HAN h :: s, e⟩ ==> ⟨c, VAL n :: s, e⟩
| vm_mark c h s e : ⟨MARK h c, s, e⟩ ==> ⟨c, HAN h :: s, e⟩
| vm_assert_num s c e n : ⟨ASSERT_NUM c, VAL (Num' n) :: s, e⟩ ==> ⟨c, VAL (Num' n) :: s, e⟩
| vm_assert_num_fail s c e c' e' : ⟨ASSERT_NUM c, VAL (Clo' c' e') :: s, e⟩ ==> ⟪s, e⟫
| vm_assert_clo s c e c' e' : ⟨ASSERT_CLO c, VAL (Clo' c' e') :: s, e⟩ ==> ⟨c, VAL (Clo' c' e') :: s, e⟩
| vm_assert_clo_fail s c e n : ⟨ASSERT_CLO c, VAL (Num' n) :: s, e⟩ ==> ⟪s, e⟫
where "x ==> y" := (VM x y).
(** Conversion functions from semantics to VM *)
Fixpoint conv (v : Value) : Value' :=
match v with
| Num n => Num' n
| Clo x e => Clo' (comp' x RET) (map conv e)
end.
Definition convE : Env -> Env' := map conv.
(** * Calculation *)
(** Boilerplate to import calculation tactics *)
Module VM <: Preorder.
Definition Conf := Conf.
Definition VM := VM.
End VM.
Module VMCalc := Calculation VM.
Import VMCalc.
(** Specification of the compiler *)
Theorem spec p e r c s : p ⇓[e] r -> ⟨comp' p c, s, convE e⟩
=>> match r with
| Some r' => ⟨c , VAL (conv r') :: s, convE e⟩
| None => ⟪s, convE e⟫
end.
(** Setup the induction proof *)
Proof.
intros.
generalize dependent c.
generalize dependent s.
induction H;intros.
(** Calculation of the compiler *)
(** - [Val n ⇓[e] Num n]: *)
begin
⟨c, VAL (Num' n) :: s, convE e⟩.
<== { apply vm_push }
⟨PUSH n c, s, convE e⟩.
[].
(** - [Add x y ⇓[e] Num (m + n)]: *)
begin
match m, n with
| Some (Num m'), Some (Num n') => ⟨c, VAL (Num' (m' + n')) :: s, convE e ⟩
| _ , _ => ⟪ s , convE e ⟫
end.
<<= {apply vm_add}
match m, n with
| Some (Num m'), Some (Num n') => ⟨ADD c, VAL (Num' n') :: VAL (Num' m') :: s, convE e ⟩
| _ , _ => ⟪ s , convE e ⟫
end.
= {auto}
match m with
| Some (Num m') => match n with
| Some v => match v with
| Num n' => ⟨ADD c, VAL (Num' n') :: VAL (Num' m') :: s, convE e ⟩
| _ => ⟪s, convE e ⟫
end
| None => ⟪ s , convE e ⟫
end
| _ => ⟪ s , convE e ⟫
end.
<<= {apply vm_add_fail}
match m with
| Some (Num m') => match n with
| Some v => ⟨ADD c, VAL (conv v) :: VAL (Num' m') :: s, convE e ⟩
| None => ⟪ s , convE e ⟫
end
| _ => ⟪ s , convE e ⟫
end.
<<= {apply vm_fail_val}
match m with
| Some (Num m') => match n with
| Some v => ⟨ADD c, VAL (conv v) :: VAL (Num' m') :: s, convE e ⟩
| None => ⟪ VAL (Num' m') :: s , convE e ⟫
end
| _ => ⟪ s , convE e ⟫
end.
<<= { apply IHeval2 }
match m with
| Some (Num m') => ⟨comp' y (ADD c), VAL (Num' m') :: s, convE e ⟩
| _ => ⟪ s , convE e ⟫
end.
= { auto }
match m with
| Some v => match v with
| Num m' => ⟨comp' y (ADD c), VAL (Num' m') :: s, convE e ⟩
| _ => ⟪ s , convE e ⟫
end
| _ => ⟪ s , convE e ⟫
end.
<<= { first [apply vm_assert_num| apply vm_assert_num_fail] }
(match m with
| Some v => ⟨ASSERT_NUM (comp' y (ADD c)), VAL (conv v) :: s, convE e ⟩
| _ => ⟪ s , convE e ⟫
end).
<<= { apply IHeval1 }
⟨comp' x (ASSERT_NUM (comp' y (ADD c))), s, convE e⟩.
[].
(** - [Throw ⇓[e] v] *)
begin
⟪s, convE e ⟫.
<== {apply vm_fail}
⟨FAIL, s, convE e⟩.
[].
(** - [Catch x y ⇓[e] v] *)
begin
match m with
| Some r => ⟨c, VAL (conv r) :: s, convE e ⟩
| None => match n with
| Some r => ⟨c, VAL (conv r) :: s, convE e ⟩
| None => ⟪s, convE e ⟫
end
end.
<<= {apply IHeval2}
match m with
| Some r => ⟨c, VAL (conv r) :: s, convE e ⟩
| None => ⟨comp' y c, s, convE e ⟩
end.
<<= {apply vm_fail_han}
match m with
| Some r => ⟨c, VAL (conv r) :: s, convE e ⟩
| None => ⟪ HAN (comp' y c) :: s, convE e ⟫
end.
<<= {apply vm_unmark}
match m with
| Some r => ⟨UNMARK c, VAL (conv r) :: HAN (comp' y c) :: s, convE e ⟩
| None => ⟪ HAN (comp' y c) :: s, convE e ⟫
end.
<<= {apply IHeval1}
⟨comp' x (UNMARK c),HAN (comp' y c) :: s, convE e ⟩.
<<= {apply vm_mark}
⟨MARK (comp' y c) (comp' x (UNMARK c)),s, convE e ⟩.
[].
(** - [Var i ⇓[e] v] *)
begin
match nth e i with
| Some r' => ⟨c, VAL (conv r') :: s, convE e ⟩
| None => ⟪s, convE e ⟫
end.
<== {first[apply vm_lookup|apply vm_lookup_fail]; unfold convE; rewrite nth_map}
⟨LOOKUP i c, s, convE e ⟩.
[].
(** - [Abs x ⇓[e] Clo x e] *)
begin
⟨c, VAL (Clo' (comp' x RET) (convE e)) :: s, convE e ⟩.
<== { apply vm_abs }
⟨ABS (comp' x RET) c, s, convE e ⟩.
[].
(** - [App x y ⇓[e] x''] *)
begin
match x'' with
| Some r' => ⟨c, VAL (conv r') :: s, convE e ⟩
| None => ⟪s, convE e ⟫
end.
<== { first[apply vm_env|apply vm_fail_env] }
match x'' with
| Some r' => ⟨RET, VAL (conv r') :: CLO c (convE e) :: s, convE (y' :: e') ⟩
| None => ⟪CLO c (convE e) :: s, convE (y' :: e') ⟫
end.
<<= { apply IHeval3 }
⟨comp' x' RET, CLO c (convE e) :: s, convE (y' :: e') ⟩.
= {reflexivity}
⟨comp' x' RET, CLO c (convE e) :: s, conv y' :: convE e' ⟩.
<== { apply vm_app }
⟨APP c, VAL (conv y') :: VAL (Clo' (comp' x' RET) (convE e')) :: s, convE e ⟩.
<<= { apply IHeval2 }
⟨comp' y (APP c), VAL (Clo' (comp' x' RET) (convE e')) :: s, convE e ⟩.
= {reflexivity}
⟨comp' y (APP c), VAL (conv (Clo x' e')) :: s, convE e ⟩.
<== {apply vm_assert_clo}
⟨ASSERT_CLO (comp' y (APP c)), VAL (conv (Clo x' e')) :: s, convE e ⟩.
<<= { apply IHeval1 }
⟨comp' x (ASSERT_CLO (comp' y (APP c))), s, convE e ⟩.
[].
begin
⟪s, convE e ⟫.
= {reflexivity}
match x' with
| Some (Clo x'' e') => match y' with
| Some r => ⟨ APP c, VAL (conv r) :: VAL (conv (Clo x'' e')) :: s, convE e ⟩
| None => ⟪s, convE e ⟫
end
| _ => ⟪s, convE e ⟫
end.
<<= {apply vm_fail_val}
match x' with
| Some (Clo x'' e') => match y' with
| Some r => ⟨ APP c, VAL (conv r) :: VAL (conv (Clo x'' e')) :: s, convE e ⟩
| None => ⟪VAL (conv (Clo x'' e')) :: s, convE e ⟫
end
| _ => ⟪s, convE e ⟫
end.
<<= {apply IHeval2}
match x' with
| Some (Clo x'' e') => ⟨comp' y (APP c), VAL (conv (Clo x'' e')) :: s, convE e ⟩
| _ => ⟪s, convE e ⟫
end.
= {reflexivity}
match x' with
| Some v => match v with
| Clo x'' e' => ⟨comp' y (APP c), VAL (conv v) :: s, convE e ⟩
| Num n => ⟪s, convE e ⟫
end
| _ => ⟪s, convE e ⟫
end.
<<= {first [apply vm_assert_clo_fail| apply vm_assert_clo]}
match x' with
| Some v => ⟨ASSERT_CLO (comp' y (APP c)), VAL (conv v) :: s, convE e ⟩
| _ => ⟪s, convE e ⟫
end.
<<= {apply IHeval1}
⟨comp' x (ASSERT_CLO (comp' y (APP c))), s, convE e ⟩.
[].
Qed.
(** * Soundness *)
Lemma determ_vm : determ VM.
intros C C1 C2 V. induction V; intro V'; inversion V'; subst; first [reflexivity|congruence].
Qed.
Definition terminates (p : Expr) : Prop := exists r, p ⇓[nil] r.
Theorem sound p C : terminates p -> ⟨comp p, nil, nil⟩ =>>! C ->
(exists r, C = ⟨HALT , VAL (conv r) :: nil, nil⟩ /\ p ⇓[nil] Some r)
\/ (C = ⟪ nil, nil⟫ /\ p ⇓[nil] None).
Proof.
unfold terminates. intros. destruct H as [r T].
pose (spec p nil r HALT nil) as H'.
pose (determ_trc determ_vm) as D. unfold determ in D.
destruct r.
- left. eexists. split. eapply D. eassumption. split. auto. intro. destruct H.
inversion H. assumption.
- right. split. eapply D. eassumption. split. auto. intro. destruct H. inversion H. assumption.
Qed.