Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this issue exists on the latest version of pandas.
-
I have confirmed this issue exists on the main branch of pandas.
Reproducible Example
I did the following steps:
conda create --name py39-repro python=3.9
conda activate py39-repro
pip install ipython; pip install pandas
ipython
In [1]: %time import pandas
CPU times: user 277 ms, sys: 146 ms, total: 423 ms
Wall time: 8.67 s
Installed Versions
INSTALLED VERSIONS
commit : 965ceca
python : 3.9.16.final.0
python-bits : 64
OS : Darwin
OS-release : 21.3.0
Version : Darwin Kernel Version 21.3.0: Wed Jan 5 21:37:58 PST 2022; root:xnu-8019.80.24~20/RELEASE_ARM64_T6000
machine : x86_64
processor : i386
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 2.0.2
numpy : 1.24.3
pytz : 2023.3
dateutil : 2.8.2
setuptools : 67.8.0
pip : 23.0.1
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : None
IPython : 8.13.2
pandas_datareader: None
bs4 : None
bottleneck : None
brotli : None
fastparquet : 2023.4.0
fsspec : 2023.5.0
gcsfs : None
matplotlib : None
numba : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pyreadstat : None
pyxlsb : None
s3fs : None
scipy : None
snappy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
zstandard : None
tzdata : 2023.3
qtpy : None
pyqt5 : None
Prior Performance
No response