-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwhiz.py
74 lines (62 loc) · 2.73 KB
/
whiz.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import os
import git
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.document_loaders import TextLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.chat_models import ChatOpenAI
from langchain.chains import ConversationalRetrievalChain
# Set OpenAI API key
# os.environ['OPENAI_API_KEY'] = "your-openai-api-key"
root_dir = './'
persist_directory = "./.chroma"
embeddings = OpenAIEmbeddings()
def is_file_ignored(file_path):
git_repo = git.Repo(search_parent_directories=True)
if not git_repo:
return False
try:
gitignore = git_repo.git.check_ignore(file_path)
return gitignore != ""
except git.exc.GitCommandError:
return False
if os.path.exists(persist_directory) and os.path.isdir(persist_directory):
db = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
else:
print("Caching the project data...")
docs = []
file_extensions = ['.py', '.swift', '.kt', '.html', '.css', '.js', '.json', '.xml', '.java', '.php', '.go', '.rb', '.c', '.cpp', '.h', '.m', '.mm', '.dart', '.cs', '.ts', '.tsx', '.jsx', '.pyi', '.rs', '.sh', '.bash', '.zsh', '.fish', '.ps1', '.bat', '.awk', '.yml', '.yaml', '.toml', '.ini', '.cfg', '.conf', '.txt', '.md', '.rst', '.csv', '.tsv', '.sql', '.graphql', '.gql']
for dirpath, dirnames, filenames in os.walk(root_dir):
for file in filenames:
file_extension = os.path.splitext(file)[1]
if file_extension in file_extensions and not is_file_ignored(os.path.join(dirpath, file)):
print(f"Adding {file}...")
loader = TextLoader(os.path.join(dirpath, file), encoding='utf-8')
docs.extend(loader.load_and_split())
print(f"{len(docs)} files...")
text_splitter = CharacterTextSplitter.from_tiktoken_encoder(chunk_size=4000, chunk_overlap=0)
texts = text_splitter.split_documents(docs)
print(f"{len(texts)} texts...")
db = Chroma.from_documents(texts, embeddings, persist_directory=persist_directory)
db.persist()
print("Starting...")
retriever = db.as_retriever()
retriever.search_kwargs = {
'distance_metric': 'cos',
'fetch_k': 100,
'maximal_marginal_relevance': True,
'k': 10
}
model = ChatOpenAI(model='gpt-4')
qa = ConversationalRetrievalChain.from_llm(model, retriever=retriever, max_tokens_limit=4000)
chat_history = []
def fetch_result(question):
result = qa({"question": question, "chat_history": chat_history})
chat_history.append((question, result['answer']))
return result['answer']
while True:
question = input("Q: ").strip()
if question.lower() == "exit":
break
answer = fetch_result(question)
print(f"{answer} \n")