You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
@@ -24,7 +24,7 @@ Analysis requires the sampling rate for your data. If you know this *a priori*,
24
24
25
25
import heartbeat as hb
26
26
27
-
data = hb.get_data('yourdata.csv')
27
+
data = hb.get_data('data.csv')#data.csv is sampled at 100Hz
28
28
measures = hb.process(data, 100.0)
29
29
30
30
@@ -89,6 +89,9 @@ This returns a 1-dimensional :code:`numpy.ndarray` containing the heart rate dat
89
89
:code:`get_data(filename, delim=',', column_name='None')` requires one argument:
90
90
91
91
***filename:** absolute or relative path to a valid (delimited .csv/.txt or matlab .mat) file;
92
+
93
+
Several optional arguments are available:
94
+
92
95
***delim** _optional_: when loading a delimited .csv or .txt file, this specifies the delimiter used. Default delim=',';
93
96
***column_name** _optional_: In delimited files with header: specifying column_name will return data from that column. Not specifying column_name for delimited files will assume the file contains only numerical data, returning np.nan values where data isnot numerical. For matlab files: column_name specifies the table name in the matlab file.
94
97
@@ -133,6 +136,9 @@ The toolkit has a simple built-in sample-rate detection. It can handle ms-based
133
136
:code:`get_samplerate_datetime(datetimedata, timeformat='%H:%M:%S.f')` requires one argument:
134
137
135
138
***datetimedata:** a list, numpy array or array-like object containing datetime-based timestamps (string);
139
+
140
+
One optional argument is available:
141
+
136
142
***timeformat** _optional_: the format of the datetime-strings in your dataset. Default timeformat='%H:%M:%S.f', 24-hour based time including ms: 21:43:12.569.
0 commit comments