-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathstatistics.py
234 lines (193 loc) · 7.4 KB
/
statistics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
from django.contrib.auth import get_user_model
from django.db.models import Avg, Case, Count, F, Sum, When, FloatField, ExpressionWrapper
from django.db.models.functions import TruncDate
from django.utils import timezone
from ohq.models import CourseStatistic, Question, QueueStatistic
User = get_user_model()
def course_calculate_student_most_questions_asked(course, last_sunday):
next_sunday = last_sunday + timezone.timedelta(days=7)
student_most_questions = (
Question.objects.filter(
queue__course=course, time_asked__gte=last_sunday, time_asked__lt=next_sunday
)
.values("asked_by")
.annotate(questions_asked=Count("asked_by"))
.order_by("-questions_asked")[:5]
)
for q in student_most_questions:
student_pk = q["asked_by"]
user = User.objects.get(pk=student_pk)
num_questions = q["questions_asked"]
CourseStatistic.objects.update_or_create(
course=course,
user=user,
metric=CourseStatistic.METRIC_STUDENT_QUESTIONS_ASKED,
date=last_sunday,
defaults={"value": num_questions},
)
def course_calculate_student_most_time_being_helped(course, last_sunday):
next_sunday = last_sunday + timezone.timedelta(days=7)
student_most_time = (
Question.objects.filter(
queue__course=course,
time_responded_to__gte=last_sunday,
time_asked__lt=next_sunday,
status=Question.STATUS_ANSWERED,
)
.values("asked_by")
.annotate(time_being_helped=Sum(F("time_responded_to") - F("time_response_started")))
.order_by("-time_being_helped")[:5]
)
for q in student_most_time:
student_pk = q["asked_by"]
user = User.objects.get(pk=student_pk)
time = q["time_being_helped"].seconds
CourseStatistic.objects.update_or_create(
course=course,
user=user,
metric=CourseStatistic.METRIC_STUDENT_TIME_BEING_HELPED,
date=last_sunday,
defaults={"value": time},
)
def course_calculate_instructor_most_questions_answered(course, last_sunday):
next_sunday = last_sunday + timezone.timedelta(days=7)
instructor_most_questions = (
Question.objects.filter(
queue__course=course,
time_responded_to__gte=last_sunday,
time_asked__lt=next_sunday,
status=Question.STATUS_ANSWERED,
)
.exclude(responded_to_by=None)
.values("responded_to_by")
.annotate(questions_answered=Count("responded_to_by"))
.order_by("-questions_answered")[:5]
)
for q in instructor_most_questions:
instructor_pk = q["responded_to_by"]
user = User.objects.get(pk=instructor_pk)
num_questions = q["questions_answered"]
CourseStatistic.objects.update_or_create(
course=course,
user=user,
metric=CourseStatistic.METRIC_INSTR_QUESTIONS_ANSWERED,
date=last_sunday,
defaults={"value": num_questions},
)
def course_calculate_instructor_most_time_helping(course, last_sunday):
next_sunday = last_sunday + timezone.timedelta(days=7)
instructor_most_time = (
Question.objects.filter(
queue__course=course,
time_responded_to__gte=last_sunday,
time_asked__lt=next_sunday,
status=Question.STATUS_ANSWERED,
)
.exclude(responded_to_by=None)
.values("responded_to_by")
.annotate(time_answering=Sum(F("time_responded_to") - F("time_response_started")))
.order_by("-time_answering")[:5]
)
for q in instructor_most_time:
instructor_pk = q["responded_to_by"]
user = User.objects.get(pk=instructor_pk)
time = q["time_answering"].seconds
CourseStatistic.objects.update_or_create(
course=course,
user=user,
metric=CourseStatistic.METRIC_INSTR_TIME_ANSWERING,
date=last_sunday,
defaults={"value": time},
)
def queue_calculate_avg_wait(queue, date):
avg = Question.objects.filter(
queue=queue,
time_asked__date=date,
time_response_started__isnull=False,
).aggregate(avg_wait=Avg(F("time_response_started") - F("time_asked")))
wait = avg["avg_wait"]
QueueStatistic.objects.update_or_create(
queue=queue,
metric=QueueStatistic.METRIC_AVG_WAIT,
date=date,
defaults={"value": wait.seconds if wait else 0},
)
def queue_calculate_avg_time_helping(queue, date):
avg = Question.objects.filter(
queue=queue,
status=Question.STATUS_ANSWERED,
time_response_started__date=date,
time_responded_to__isnull=False,
).aggregate(avg_time=Avg(F("time_responded_to") - F("time_response_started")))
duration = avg["avg_time"]
QueueStatistic.objects.update_or_create(
queue=queue,
metric=QueueStatistic.METRIC_AVG_TIME_HELPING,
date=date,
defaults={"value": duration.seconds if duration else 0},
)
def queue_calculate_wait_time_heatmap(queue, weekday, hour):
interval_avg = Question.objects.filter(
queue=queue,
time_asked__week_day=weekday,
time_asked__hour=hour,
time_response_started__isnull=False,
).aggregate(avg_wait=Avg(F("time_response_started") - F("time_asked")))
interval_avg_wait = interval_avg["avg_wait"]
QueueStatistic.objects.update_or_create(
queue=queue,
metric=QueueStatistic.METRIC_HEATMAP_WAIT,
day=weekday,
hour=hour,
defaults={"value": interval_avg_wait.seconds if interval_avg_wait else 0},
)
def queue_calculate_num_questions_ans(queue, date):
num_questions = Question.objects.filter(
queue=queue,
status=Question.STATUS_ANSWERED,
time_responded_to__date=date,
).count()
QueueStatistic.objects.update_or_create(
queue=queue,
metric=QueueStatistic.METRIC_NUM_ANSWERED,
date=date,
defaults={"value": num_questions},
)
def queue_calculate_num_students_helped(queue, date):
num_students = (
Question.objects.filter(
queue=queue,
status=Question.STATUS_ANSWERED,
time_responded_to__date=date,
)
.distinct("asked_by")
.count()
)
QueueStatistic.objects.update_or_create(
queue=queue,
metric=QueueStatistic.METRIC_STUDENTS_HELPED,
date=date,
defaults={"value": num_students},
)
def queue_calculate_questions_per_ta_heatmap(queue, weekday, hour):
interval_stats = (
Question.objects.filter(queue=queue, time_asked__week_day=weekday, time_asked__hour=hour)
.annotate(date=TruncDate("time_asked"))
.values("date")
.annotate(
questions=Count("date", distinct=False),
tas=Count("responded_to_by", distinct=True),
)
.annotate(
q_per_ta=Case(When(tas=0, then=ExpressionWrapper(F("questions"), output_field=FloatField())), default=1.0 * F("questions") / F("tas")),
)
.aggregate(avg=Avg(F("q_per_ta"), output_field=FloatField()))
)
statistic = interval_stats["avg"]
QueueStatistic.objects.update_or_create(
queue=queue,
metric=QueueStatistic.METRIC_HEATMAP_QUESTIONS_PER_TA,
day=weekday,
hour=hour,
defaults={"value": statistic if statistic else 0},
)