Skip to content

Commit 2f243f2

Browse files
committed
readme update
1 parent c8ed6d7 commit 2f243f2

File tree

1 file changed

+28
-1
lines changed

1 file changed

+28
-1
lines changed

README.md

+28-1
Original file line numberDiff line numberDiff line change
@@ -104,7 +104,6 @@ python demo.py --input_res 512 --arch resdcn_101 ctdet --demo /path/to/image/or/
104104
python demo.py --input_res 512 --arch dla_34 ctdet --demo /path/to/image/or/folder/or/video/or/webcam --load_model ../models/ctdet_coco_dla_2x.pth --exp_wo --exp_wo_dim 512
105105
```
106106
### 4)Export weights for MobileNetSSD
107-
108107
To get the weights needed to run Mobilenet tests use [this](https://github.com/mive93/pytorch-ssd) fork of a Pytorch implementation of SSD network.
109108

110109
```
@@ -113,6 +112,34 @@ cd pytorch-ssd
113112
conda env create -f env_mobv2ssd.yml
114113
python run_ssd_live_demo.py mb2-ssd-lite <pth-model-fil> <labels-file>
115114
```
115+
116+
## Darknet Parser
117+
tkDNN implement and easy parser for darknet cfg files, a network can be converted with *tk::dnn::darknetParser*:
118+
```
119+
// example of parsing yolo4
120+
tk::dnn::Network *net = tk::dnn::darknetParser("yolov4.cfg", "yolov4/layers", "coco.names");
121+
net->print();
122+
```
123+
All models from darknet are now parsed directly from cfg, you still need to export the weights with the descripted tools in the previus section.
124+
<details>
125+
<summary>Supported layers</summary>
126+
convolutional
127+
maxpool
128+
avgpool
129+
shortcut
130+
upsample
131+
route
132+
reorg
133+
region
134+
yolo
135+
</details>
136+
<details>
137+
<summary>Supported activations</summary>
138+
relu
139+
leaky
140+
mish
141+
</details>
142+
116143
## Run the demo
117144

118145
To run the an object detection demo follow these steps (example with yolov3):

0 commit comments

Comments
 (0)