-
Notifications
You must be signed in to change notification settings - Fork 400
/
Copy pathlogging_template.py
261 lines (224 loc) · 8.18 KB
/
logging_template.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import argparse, os, sys, glob
import torch
import numpy as np
from omegaconf import OmegaConf
import streamlit as st
from torch.utils.data.dataloader import default_collate
from pytorch_lightning import seed_everything
from tqdm import tqdm
import datetime
from ldm.util import instantiate_from_config
from main import DataModuleFromConfig, ImageLogger, SingleImageLogger
rescale = lambda x: (x + 1.) / 2.
class DummyLogger:
pass
def bchw_to_st(x):
return rescale(x.detach().cpu().numpy().transpose(0,2,3,1))
def run(model, dsets, callbacks, logdir, split="train",
batch_size=8, start_index=0, sample_batch=False, nowname="", use_full_data=False):
logdir = os.path.join(logdir, nowname)
os.makedirs(logdir, exist_ok=True)
dset = dsets.datasets[split]
print(f"Dataset size: {len(dset)}")
dloader = torch.utils.data.DataLoader(dset, batch_size=opt.batch_size, drop_last=False, shuffle=False)
if not use_full_data:
if sample_batch:
indices = np.random.choice(len(dset), batch_size)
else:
indices = list(range(start_index, start_index+batch_size))
print(f"Data indices: {list(indices)}")
example = default_collate([dset[i] for i in indices])
for cb in callbacks:
if isinstance(cb, ImageLogger):
print(f"logging with {cb.__class__.__name__}")
cb.log_img(model, example, 0, split=split, save_dir=logdir)
else:
for batch in tqdm(dloader, desc="Data"):
for cb in callbacks:
if isinstance(cb, SingleImageLogger):
cb.log_img(model, batch, 0, split=split, save_dir=logdir)
def get_parser():
parser = argparse.ArgumentParser()
parser.add_argument(
"-r",
"--resume",
type=str,
nargs="?",
help="load from logdir or checkpoint in logdir",
)
parser.add_argument(
"-b",
"--base",
nargs="*",
metavar="base_config.yaml",
help="paths to base configs. Loaded from left-to-right. "
"Parameters can be overwritten or added with command-line options of the form `--key value`.",
default=list(),
)
parser.add_argument(
"-c",
"--config",
nargs="?",
metavar="single_config.yaml",
help="path to single config. If specified, base configs will be ignored "
"(except for the last one if left unspecified).",
const=True,
default="",
)
parser.add_argument(
"-n",
"--n_iter",
type=int,
default=1,
help="how many times to run",
)
parser.add_argument(
"--batch_size",
type=int,
default=4,
help="how many examples in the batch",
)
parser.add_argument(
"--split",
type=str,
default="validation",
help="evaluate on this split",
)
parser.add_argument(
"--logdir",
type=str,
default="eval_logs",
help="where to save the logs",
)
parser.add_argument(
"--state_key",
type=str,
default="state_dict",
choices=["state_dict", "model_ema", "model"],
help="where to access the model weights",
)
parser.add_argument(
"--full_data",
action='store_true',
help="evaluate on full dataset",
)
parser.add_argument(
"--ignore_callbacks",
action='store_true',
help="ignores all callbacks in the config and only uses main.SingleImageLogger",
)
return parser
def load_model_from_config(config, sd, gpu=True, eval_mode=True):
model = instantiate_from_config(config)
print("loading model from state-dict...")
if sd is not None:
m, u = model.load_state_dict(sd)
if len(m) > 0: print(f"missing keys: \n {m}")
if len(u) > 0: print(f"unexpected keys: \n {u}")
print("loaded model.")
if gpu:
model.cuda()
if eval_mode:
model.eval()
return {"model": model}
def get_data(config):
# get data
data = instantiate_from_config(config.data)
data.prepare_data()
data.setup()
return data
def get_callbacks(lightning_config, ignore_callbacks=False):
callbacks_cfg = lightning_config.callbacks
callbacks = [instantiate_from_config(callbacks_cfg[k]) for k in callbacks_cfg]
print(f"found and instantiated the following callback(s):")
for cb in callbacks:
print(f" > {cb.__class__.__name__}")
print()
if len(callbacks) == 0 or ignore_callbacks:
del callbacks
callbacks = list()
print("No callbacks found. Falling back to SingleImageLogger as a default")
try:
callbacks.append(SingleImageLogger(1, max_images=opt.batch_size, log_always=True,
log_images_kwargs=lightning_config.callbacks.image_logger.params.log_images_kwargs))
except:
print("No log_images_kwargs specified. Using SingleImageLogger with default values in log_images().")
callbacks.append(SingleImageLogger(1, max_images=opt.batch_size, log_always=True))
return callbacks
@st.cache(allow_output_mutation=True)
def load_model_and_dset(config, ckpt, gpu, eval_mode):
# get data
dsets = get_data(config) # calls data.config ...
# now load the specified checkpoint
if ckpt:
pl_sd = torch.load(ckpt, map_location="cpu")
try:
global_step = pl_sd["global_step"]
except:
global_step = 0
else:
pl_sd = {"state_dict": None}
global_step = None
model = load_model_from_config(config.model,
#pl_sd["state_dict"],
pl_sd[opt.state_key],
gpu=gpu,
eval_mode=eval_mode)["model"]
return dsets, model, global_step
def exists(x):
return x is not None
if __name__ == "__main__":
sys.path.append(os.getcwd())
if not st._is_running_with_streamlit:
print("Not running with streamlit. Redefining st functions...")
st.info = print
st.write = print
seed_everything(42)
parser = get_parser()
opt, unknown = parser.parse_known_args()
ckpt = None
assert opt.resume
if not os.path.exists(opt.resume):
raise ValueError("Cannot find {}".format(opt.resume))
if os.path.isfile(opt.resume):
paths = opt.resume.split("/")
try:
idx = len(paths)-paths[::-1].index("logs")+1
except ValueError:
idx = -2 # take a guess: path/to/logdir/checkpoints/model.ckpt
logdir = "/".join(paths[:idx])
ckpt = opt.resume
else:
assert os.path.isdir(opt.resume), opt.resume
logdir = opt.resume.rstrip("/")
ckpt = os.path.join(logdir, "checkpoints", "last.ckpt")
base_configs = sorted(glob.glob(os.path.join(logdir, "configs/*-project.yaml")))
opt.base = base_configs+opt.base
if opt.config:
if type(opt.config) == str:
opt.base = [opt.config]
else:
opt.base = [opt.base[-1]]
configs = [OmegaConf.load(cfg) for cfg in opt.base]
cli = OmegaConf.from_dotlist(unknown)
config = OmegaConf.merge(*configs, cli)
lightning_configs = sorted(glob.glob(os.path.join(logdir, "configs/*-lightning.yaml")))
lightning_configs = [OmegaConf.load(lcfg) for lcfg in lightning_configs]
lightning_config = OmegaConf.merge(*lightning_configs, cli)
print(f"ckpt-path: {ckpt}")
print(config)
print(lightning_config)
gpu = True
eval_mode = True
callbacks = get_callbacks(lightning_config.lightning, ignore_callbacks=opt.ignore_callbacks)
dsets, model, global_step = load_model_and_dset(config, ckpt, gpu, eval_mode)
print(f"global step: {global_step}")
logdir = os.path.join(logdir, opt.logdir, f"{global_step:09}")
print(f"logging to {logdir}")
os.makedirs(logdir, exist_ok=True)
# go
now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
for n in range(opt.n_iter):
nowname = now + "_iteration-" + f"{n:03}"
run(model, dsets, callbacks, logdir=logdir, batch_size=opt.batch_size, nowname=nowname,
split=opt.split, use_full_data=opt.full_data)