-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdes.rs
429 lines (374 loc) · 15.8 KB
/
des.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
use thiserror::Error;
pub struct Des {
pub key: u64,
pub subkeys: [u64; 16],
pub subkeys_computed: bool,
}
impl Des {
const IP_TABLE: [u8; 64] = [
58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4, 62, 54, 46, 38, 30, 22, 14,
6, 64, 56, 48, 40, 32, 24, 16, 8, 57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11,
3, 61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7,
];
const PC1_TABLE: [u8; 56] = [
57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18, 10, 2, 59, 51, 43, 35, 27, 19, 11, 3,
60, 52, 44, 36, 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22, 14, 6, 61, 53, 45,
37, 29, 21, 13, 5, 28, 20, 12, 4,
];
const PC2_TABLE: [u8; 48] = [
14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10, 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2, 41,
52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48, 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32,
];
const FP_TABLE: [u8; 64] = [
40, 8, 48, 16, 56, 24, 64, 32, 39, 7, 47, 15, 55, 23, 63, 31, 38, 6, 46, 14, 54, 22, 62,
30, 37, 5, 45, 13, 53, 21, 61, 29, 36, 4, 44, 12, 52, 20, 60, 28, 35, 3, 43, 11, 51, 19,
59, 27, 34, 2, 42, 10, 50, 18, 58, 26, 33, 1, 41, 9, 49, 17, 57, 25,
];
const EXPANSION_TABLE: [u8; 48] = [
32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9, 8, 9, 10, 11, 12, 13, 12, 13, 14, 15, 16, 17, 16, 17,
18, 19, 20, 21, 20, 21, 22, 23, 24, 25, 24, 25, 26, 27, 28, 29, 28, 29, 30, 31, 32, 1,
];
// Define the 8 S-Boxes as 4x16 tables:
const S1: [[u8; 16]; 4] = [
[14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7],
[0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8],
[4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0],
[15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13],
];
const S2: [[u8; 16]; 4] = [
[15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10],
[3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5],
[0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15],
[13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9],
];
const S3: [[u8; 16]; 4] = [
[10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8],
[13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1],
[13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7],
[1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12],
];
const S4: [[u8; 16]; 4] = [
[7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15],
[13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9],
[10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4],
[3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14],
];
const S5: [[u8; 16]; 4] = [
[2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9],
[14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6],
[4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14],
[11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3],
];
const S6: [[u8; 16]; 4] = [
[12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11],
[10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8],
[9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6],
[4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13],
];
const S7: [[u8; 16]; 4] = [
[4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1],
[13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6],
[1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2],
[6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12],
];
const S8: [[u8; 16]; 4] = [
[13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7],
[1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2],
[7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8],
[2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11],
];
// Group the S-Boxes into a static array:
const S_BOXES: [[[u8; 16]; 4]; 8] = [
Self::S1,
Self::S2,
Self::S3,
Self::S4,
Self::S5,
Self::S6,
Self::S7,
Self::S8,
];
const P_BOX: [u8; 32] = [
16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10, 2, 8, 24, 14, 32, 27, 3, 9,
19, 13, 30, 6, 22, 11, 4, 25,
];
pub fn new(key: u64) -> Self {
Self {
key,
subkeys: [0; 16],
subkeys_computed: false,
}
}
/// Permute the data using the table
/// table: the permutation table
/// input_key_length: the length of the input key in bits. If you want permute a 64-bit key, use 64.
/// data: the data to permute
///
/// Des typically numbers bits from left to right (1..64) (little endian):
/// Bit 63 is the leftmost (most significant) bit in a u64.
/// Bit 0 is the rightmost (least significant) bit.
///
/// In Rust, we number bits from right to left (0..63) (big endian):
/// Bit 0 is the rightmost (least significant) bit.
/// Bit 63 is the leftmost (most significant) bit.
pub fn permute(&self, table: &[u8], input_key_length: u8, data: u64) -> u64 {
let mut output = 0u64;
for i in table.iter() {
// In the tables (left to right, 1-based):
// bit 1 is the left most bit (MSB)
// bit 64 is the right most bit (LSB)
// In Rust (right to left, 0-based):
// bit 0 is the right most bit (LSB)
// bit 63 is the left most bit (MSB)
// so the left most bit from the table goes to bit index 63
let input_bit_position = input_key_length - i;
// extract the bit from the data
let bit = (data >> input_bit_position) & 1;
// shift output by 1 to make space for the bit
output <<= 1;
// set the bit in the output
output |= bit;
}
output
}
pub fn key_schedule(&mut self, key: u64) -> [u64; 16] {
// Permutation Choice 1 -> 56 bits
let permuted_key = self.perm_choice_1(key);
// split the permuted key into two halves
let (c0, d0) = self.split_key(permuted_key);
let mut c = c0;
let mut d = d0;
// Left rotation
for round in 0..16 {
let shift = match round {
0 | 1 | 8 | 15 => 1,
_ => 2,
};
c = self.left_rotation(c, shift);
d = self.left_rotation(d, shift);
let key = ((c as u64) << 28) | (d as u64);
// Permutation Choice 2
self.subkeys[round] = self.perm_choice_2(key);
}
self.subkeys_computed = true;
self.subkeys
}
pub fn split_key(&self, key: u64) -> (u32, u32) {
// upper 28 bits
let c0 = key >> 28;
// lower 28 bits
let d0 = key & ((1 << 28) - 1);
(c0 as u32, d0 as u32)
}
/// This is a simple implementation of initial permutation
/// TODO: use delta swap
pub fn initial_permutation(&self, plain_text: u64) -> u64 {
self.permute(&Self::IP_TABLE, 64, plain_text)
}
/// Reduce 64-bit key to 56-bit key by ignore every 8th bit
/// DES typically numbers bits from left to right (1..64) (little endian)
/// Bit 63 is the leftmost (most significant) bit in a u64.
/// Bit 0 is the rightmost (least significant) bit.
///
/// <--- bit 63..bit 56 bit 0 -->
/// +----------+------------------------------+-------------+
/// |8 bits 0 | 56 bits of data |
/// +----------+------------------------------+-------------+
/// 0b0000_0000_XXXXXXXXXXXXXXXXXXXXXXXXXXXX_..._XXXXXXXXXX
/// ^^^^^^^^^^ ^^^^^^^^^^^^^^^^^^
/// 8 bits zero 56 bits
pub fn perm_choice_1(&mut self, key: u64) -> u64 {
self.permute(&Self::PC1_TABLE, 64, key)
}
/// Reduce 56-bit key to 48-bit key by ignore every 8th bit
pub fn perm_choice_2(&mut self, key: u64) -> u64 {
self.permute(&Self::PC2_TABLE, 56, key)
}
pub fn final_permutation(&mut self, key: u64) -> u64 {
self.permute(&Self::FP_TABLE, 64, key)
}
pub fn left_rotation(&mut self, key: u32, shift: u8) -> u32 {
// shift all bits to the left (this might overflow)
let shifted_left_bits = key << shift;
// get the overflow bits
let overflow_bits = key >> (28 - shift);
// combine the shifted bits with the overflow bits
let result = shifted_left_bits | overflow_bits;
// mask the result to 28 bits
let mask_28 = (1 << 28) - 1;
result & mask_28
}
pub fn encrypt(&mut self, plain_text: u64) -> u64 {
// initial permutation -> 64 bits
let permuted_text = self.initial_permutation(plain_text);
// spit the permuted data into two halves
// left half (32 bits)
let l0 = (permuted_text >> 32) as u32;
// right half (32 bits)
let r0 = (permuted_text & ((1 << 32) - 1)) as u32;
// key schedule 16 Feistel Rounds
let subkeys = if self.subkeys_computed {
self.subkeys
} else {
self.key_schedule(self.key)
};
let (l16, r16) = self.feistel_rounds(l0, r0, &subkeys);
// Final permutation
// Combine (r16, l16) into a u64
// Classic approach puts r16 on the left and l16 on the right
let pre_final_permutation = (r16 as u64) << 32 | l16 as u64;
self.final_permutation(pre_final_permutation)
}
pub fn feistel_round(&self, mut l: u32, mut r: u32, subkey: u64) -> (u32, u32) {
// expand right half to 48 bits
let expanded_right_half = self.expand_right_half(r);
// round key mixing (xor with subkey)
let mixed_right_half = expanded_right_half ^ subkey;
// s-box substitution
let s_box_output = self.s_box_substitution(mixed_right_half);
// p-box permutation
let p_box_output = self.p_box_substitution(s_box_output);
// xor with left half
let xored_output = p_box_output ^ l;
// swap left and right halves
l = r;
r = xored_output;
(l, r)
}
pub fn feistel_rounds(&self, mut l: u32, mut r: u32, subkeys: &[u64; 16]) -> (u32, u32) {
for round in 0..16 {
let subkey = subkeys[round];
(l, r) = self.feistel_round(l, r, subkey);
}
(l, r)
}
pub fn feistel_rounds_rev(&self, mut l: u32, mut r: u32, subkeys: &[u64; 16]) -> (u32, u32) {
for round in (0..16).rev() {
let subkey = subkeys[round];
(l, r) = self.feistel_round(l, r, subkey);
}
(l, r)
}
pub fn expand_right_half(&self, r: u32) -> u64 {
self.permute(&Self::EXPANSION_TABLE, 32, r as u64)
}
/// Turn 6-bit chunk into 4-bit chunk
/// chunk: 6-bit b5b4b3b2b1b0
pub fn s_box_lookup(&self, s_box: &[[u8; 16]; 4], chunk: u64) -> u64 {
// isolate b5 and move it to b0
let top_bit = (chunk & 0b100000) >> 4;
// isolate b0
let bottom_bit = chunk & 0b000001;
// row = top bit + bottom bit
let row = top_bit | bottom_bit;
// column = middle 4 bits. Isolate b4b3b2b1 then shift them down
let column = (chunk & 0b011110) >> 1;
// lookup the value in the s-box
let value = s_box[row as usize][column as usize];
// return the value as a u64
value.into()
}
pub fn s_box_substitution(&self, chunk: u64) -> u32 {
let mut output = 0u32;
// in DES sense, we process chunks from left to right
// but in Rust, we process chunks from right to left
// i = 0 chunk: b47..b42, input_shift = 6 * (7-0) = 42
// i = 1 chunk: b41..b36, input_shift = 6 * (7-1) = 36
// i = 2 chunk: b35..b30, input_shift = 6 * (7-2) = 30
// i = 3 chunk: b29..b24, input_shift = 6 * (7-3) = 24
// i = 4 chunk: b23..b18, input_shift = 6 * (7-4) = 18
// i = 5 chunk: b17..b12, input_shift = 6 * (7-5) = 12
// i = 6 chunk: b11..b6, input_shift = 6 * (7-6) = 6
// i = 7 chunk: b5..b0, input_shift = 6 * (7-7) = 0
for i in 0..8 {
let input_shift = 6 * (7 - i);
// isolate the chunk with 6 bits
let chunk = (chunk >> input_shift) & 0b111111;
// lookup the value in the s-box to get a 4-bits value
let value = self.s_box_lookup(&Self::S_BOXES[i], chunk);
// place the value in the output
// i = 0, output_shift = 4 * (7 - 0) = 28, output_chunk: b27..b24
// i = 1, output_shift = 4 * (7 - 1) = 24, output_chunk: b23..b20
// i = 2, output_shift = 4 * (7 - 2) = 20, output_chunk: b19..b16
// i = 3, output_shift = 4 * (7 - 3) = 16, output_chunk: b15..b12
// i = 4, output_shift = 4 * (7 - 4) = 12, output_chunk: b11..b8
// i = 5, output_shift = 4 * (7 - 5) = 8, output_chunk: b7..b4
// i = 6, output_shift = 4 * (7 - 6) = 4, output_chunk: b3..b0
let output_shift = 4 * (7 - i);
output |= (value as u32) << output_shift;
}
output
}
/// Introduce diffusion to the s-box output
pub fn p_box_substitution(&self, chunk: u32) -> u32 {
self.permute(&Self::P_BOX, 32, chunk as u64) as u32
}
pub fn decrypt(&mut self, cipher_text: u64) -> u64 {
// initial permutation -> 64 bits
let permuted_text = self.initial_permutation(cipher_text);
// spit the permuted data into two halves
// left half (32 bits)
let l0 = (permuted_text >> 32) as u32;
// right half (32 bits)
let r0 = (permuted_text & ((1 << 32) - 1)) as u32;
// key schedule 16 Feistel Rounds
let subkeys = self.key_schedule(self.key);
let (l16, r16) = self.feistel_rounds_rev(l0, r0, &subkeys);
// Final permutation
// Combine (r16, l16) into a u64
// Classic approach puts r16 on the left and l16 on the right
let pre_final_permutation = (r16 as u64) << 32 | l16 as u64;
self.final_permutation(pre_final_permutation)
}
}
#[derive(Error, Debug)]
pub enum DesError {}
#[cfg(test)]
mod tests {
use super::Des;
use crate::common::hex::Hex;
#[test]
fn test_ip() {
let key = Hex::new("hi").unwrap();
let des = Des::new(u64::from(key));
let plain_text = Hex::new("hello").unwrap();
let ip_output = des.initial_permutation(u64::from(plain_text));
assert_eq!(ip_output, 17870547822688397440u64);
}
#[test]
fn test_pc1() {
let mut des = Des::new(26729u64);
let pc1_output = des.perm_choice_1(26729u64);
assert_eq!(pc1_output, 211930866256896u64);
}
#[test]
fn test_pc2() {
let mut des = Des::new(26729u64);
let pc2_output = des.perm_choice_2(26729u64);
assert_eq!(pc2_output, 49496u64);
}
#[test]
fn test_left_rotation() {
let mut des = Des::new(26729u64);
let left_rotation_output = des.left_rotation(26729u32, 1);
assert_eq!(left_rotation_output, 53458u32);
}
#[test]
fn test_encrypt() {
let mut des = Des::new(26729u64);
let plain_text = Hex::new("hello").unwrap();
let encrypted_text = des.encrypt(u64::from(plain_text));
assert_eq!(format!("{:X}", encrypted_text), "A74BCE81F3679AEF");
let plain_text = Hex::new("world").unwrap();
let encrypted_text = des.encrypt(u64::from(plain_text));
assert_eq!(format!("{:X}", encrypted_text), "BAFFC2305F333606");
}
#[test]
fn test_decrypt() {
let mut des = Des::new(26729u64);
let cipher_text = Hex::new("A74BCE81F3679AEF").unwrap();
let decrypted_text = des.decrypt(u64::from(cipher_text));
let plain_text = Hex::new("hello").unwrap();
assert_eq!(format!("{:X}", decrypted_text), format!("{}", plain_text));
}
}