-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
89 lines (67 loc) · 2.73 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
"""
Evaluates a model on the benchmark dataset.
Usage:
python evaluate.py --input_file <path to input file> --output_file <path to output file> --model <model name> --mode <baseline or few-shot>
Example:
python evaluate.py --input_file data/benchmark_samples/hendrycks_sample_0421.csv --output_file data/model_output/results_0421.csv --model text-davinci-003 --mode baseline
Author: Peter Zhang
"""
import argparse
import datetime as dt
from functools import partial
import pandas as pd
from tqdm import tqdm
tqdm.pandas()
from ask_question import ask_row, df_to_examples
INPUT_FILE = f"data/benchmark_samples/hendrycks_sample_{dt.date.today().strftime('%m%d')}.csv"
OUTPUT_FILE = f"data/model_output/results_{dt.date.today().strftime('%m%d')}.csv"
def evaluate_metrics(
df: pd.DataFrame,
model: str="text-davinci-003",
mode: str="baseline",
):
"""
Asks a set of questions and evaluates accuracy and calibration.
Args:
df: a dataframe with the following columns:
question: the question text
choice_A: the first choice
choice_B: the second choice
choice_C: the third choice
choice_D: the fourth choice
correct_answer: the correct answer
topic: the topic of the question
split: the split of the question
model: the model to use for answering the questions
Returns:
A dataframe with the same columns as the input
dataframe, plus the following columns:
answer: the model"s answer
logprobs: the log probabilities of the model"s answer
justification: the model"s justification
"""
if mode == "few-shot":
dev_df = df[df["split"]=="dev"]
examples = df_to_examples(dev_df, n_examples=3)
df = df[df["split"]=="test"]
result = df.progress_apply(partial(ask_row, model=model, mode="few-shot",examples=examples), axis=1)
else:
result = df.progress_apply(partial(ask_row, model=model), axis=1)
df[["answer", "logprobs", "justification"]] = pd.DataFrame(
result.tolist(), index=df.index)
return df
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--input_file", type=str, default=INPUT_FILE)
parser.add_argument("--output_file", type=str, default=OUTPUT_FILE)
parser.add_argument("--model", type=str, default="text-davinci-003")
parser.add_argument("--mode", type=str, default="baseline")
args = parser.parse_args()
# load test data
df = pd.read_csv(args.input_file)
# evaluate
df = evaluate_metrics(df, model=args.model, mode=args.mode)
# save results
df.to_csv(args.output_file, index=False)
if __name__=="__main__":
main()