-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathget_embeddings.py
157 lines (127 loc) · 4.65 KB
/
get_embeddings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
"""
Utillities for creating embeddings.
Author: Ruiqi Zhong
"""
import glob
import json
import os
from argparse import ArgumentParser
from functools import partial
from os.path import join
from typing import List
import numpy as np
import torch
import tqdm
from transformers import (BertModel, BertTokenizer, RobertaModel,
RobertaTokenizer, T5EncoderModel, T5Tokenizer)
device = "cuda" if torch.cuda.is_available() else "cpu"
BSIZE = 32
SAVE_EVERY = 10000
DEFAULT_SAMPLES = 100000
DATA_FOLDER = "unlabeled"
def roberta_embed(model_tokenizer, sentences: List[str]):
"""
Embeds a list of sentences using Roberta.
"""
model, tokenizer = model_tokenizer
model.eval()
with torch.no_grad():
inputs = tokenizer(
sentences, return_tensors="pt", padding=True, truncation=True
).to(device)
outputs = model(**inputs).pooler_output
return outputs.cpu().numpy()
def t5_embed(model_tokenizer, sentences: List[str]):
"""
Embeds a list of sentences using T5.
"""
model, tokenizer = model_tokenizer
model.eval()
with torch.no_grad():
inputs = tokenizer(
sentences, return_tensors="pt", padding=True, truncation=True
).to(device)
outputs = torch.mean(model(**inputs).last_hidden_state, dim=1)
return outputs.cpu().numpy()
def bert_embed(model_tokenizer, sentences: List[str]):
"""
Embeds a list of sentences using BERT.
"""
model, tokenizer = model_tokenizer
model.eval()
with torch.no_grad():
inputs = tokenizer(
sentences, return_tensors="pt", padding=True, truncation=True
).to(device)
outputs = model(**inputs).pooler_output
return outputs.cpu().numpy()
def embed_sentences(
embed_func,
sentences: List[str],
samples: int,
bsize: int = BSIZE,
save_dir: str = None,
):
"""
Embeds a list of sentences using a given embedding function.
"""
embeddings, texts = [], []
save_threshold = [i * SAVE_EVERY for i in range(1, samples // SAVE_EVERY + 2)]
for i in tqdm.trange(0, len(sentences), bsize):
sentence_batch = sentences[i : i + bsize]
embeddings.extend(embed_func(sentence_batch))
texts.extend(sentence_batch)
finished_count = i + bsize
if save_dir is not None and finished_count > save_threshold[0]:
embeddings = np.array(embeddings)
np.save(os.path.join(save_dir, f"{finished_count}.npy"), embeddings)
json.dump(
texts, open(os.path.join(save_dir, f"{finished_count}.json"), "w")
)
save_threshold.pop(0)
embeddings = []
texts = []
if len(embeddings) > 0:
np.save(
os.path.join(save_dir, f"{finished_count}.npy"),
np.concatenate(embeddings, axis=0),
)
json.dump(texts, open(os.path.join(save_dir, f"{finished_count}.json"), "w"))
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--get_all", action="store_true")
parser.add_argument("--dataset", type=str)
parser.add_argument("--model_name", type=str, default="roberta-base")
parser.add_argument("--samples", type=int, default=DEFAULT_SAMPLES)
args = parser.parse_args()
get_all = args.get_all
model_name = args.model_name
samples = args.samples
dataset = args.dataset
if "roberta" in model_name:
model = RobertaModel.from_pretrained(model_name).to(device)
tokenizer = RobertaTokenizer.from_pretrained(model_name)
model_tokenizer = (model, tokenizer)
embed_func = partial(roberta_embed, model_tokenizer)
elif "t5" in model_name:
model = T5EncoderModel.from_pretrained(model_name).to(device)
tokenizer = T5Tokenizer.from_pretrained(model_name)
model_tokenizer = (model, tokenizer)
embed_func = partial(t5_embed, model_tokenizer)
elif "bert" in model_name:
model = BertModel.from_pretrained(model_name).to(device)
tokenizer = BertTokenizer.from_pretrained(model_name)
model_tokenizer = (model, tokenizer)
embed_func = partial(bert_embed, model_tokenizer)
if get_all:
files = glob.glob("unlabeled/*")
datasets = [file[10:-5] for file in files]
else:
datasets = [dataset]
for dataset in datasets:
print(f"embedding {dataset}")
save_dir = f"results/{dataset}_embeddings"
os.makedirs(save_dir, exist_ok=True)
filename = join(DATA_FOLDER, f"{dataset}.json")
data = json.load(open(filename, "r"))[:samples]
embeddings = embed_sentences(embed_func, data, samples, save_dir=save_dir)