@@ -26,6 +26,7 @@ def signal_fct(signal):
2626 return signal
2727
2828
29+ @physio_or_numpy
2930def std (signal ):
3031 """
3132 Calculate standard deviation across input channels of signal.
@@ -40,11 +41,11 @@ def std(signal):
4041 N-sized array :obj:`numpy.ndarray`
4142 Standard deviation of signal.
4243 """
43- signal = physio_or_numpy (signal )
4444 std_val = np .std (signal , axis = 0 )
4545 return std_val
4646
4747
48+ @physio_or_numpy
4849def mean (signal : np .array ):
4950 """
5051 Calculate mean across input channels of signal.
@@ -59,11 +60,11 @@ def mean(signal: np.array):
5960 N-sized array :obj:`numpy.ndarray`
6061 Mean of signal.
6162 """
62- signal = physio_or_numpy (signal )
6363 mean_val = np .mean (signal , axis = 0 )
6464 return mean_val
6565
6666
67+ @physio_or_numpy
6768def tSNR (signal ):
6869 """
6970 Calculate temporal signal to noise ratio of signal.
@@ -78,11 +79,11 @@ def tSNR(signal):
7879 N-sized array :obj:`numpy.ndarray`
7980 Temporal signal to noise ratio of signal.
8081 """
81- signal = physio_or_numpy (signal )
8282 tSNR_val = np .mean (signal , axis = 0 ) / np .std (signal , axis = 0 )
8383 return tSNR_val
8484
8585
86+ @physio_or_numpy
8687def CoV (signal ):
8788 """
8889 Calculate coefficient of variation of signal.
@@ -97,11 +98,11 @@ def CoV(signal):
9798 N-sized array :obj:`numpy.ndarray`
9899 Temporal signal to noise ratio of signal.
99100 """
100- signal = physio_or_numpy (signal )
101101 cov_val = np .std (signal , axis = 0 ) / np .mean (signal , axis = 0 )
102102 return cov_val
103103
104104
105+ @physio_or_numpy
105106def min (signal : np .array ):
106107 """
107108 Calculate min across input channels of signal.
@@ -116,11 +117,11 @@ def min(signal: np.array):
116117 N-sized array :obj:`numpy.ndarray`
117118 min of signal.
118119 """
119- signal = physio_or_numpy (signal )
120120 min_val = np .min (signal , axis = 0 )
121121 return min_val
122122
123123
124+ @physio_or_numpy
124125def max (signal : np .array ):
125126 """
126127 Calculate max across input channels of signal.
@@ -135,11 +136,11 @@ def max(signal: np.array):
135136 N-sized array :obj:`numpy.ndarray`
136137 max of signal.
137138 """
138- signal = physio_or_numpy (signal )
139139 max_val = np .max (signal , axis = 0 )
140140 return max_val
141141
142142
143+ @physio_or_numpy
143144def iqr (signal : np .array , q_high : float = 75 , q_low : float = 25 ):
144145 """Calculate the Inter Quantile Range (IQR) over the input signal.
145146
@@ -157,13 +158,13 @@ def iqr(signal: np.array, q_high: float = 75, q_low: float = 25):
157158 np.array
158159 iqr of the signal
159160 """
160- signal = physio_or_numpy (signal )
161161 p_high , p_low = np .percentile (signal , [q_high , q_low ], axis = 0 )
162162 iqr_val = p_high - p_low
163163
164164 return iqr_val
165165
166166
167+ @physio_or_numpy
167168def percentile (signal : np .array , perc : float = 2 ):
168169 """Calculate the percentile perc over the signal.
169170
@@ -179,7 +180,6 @@ def percentile(signal: np.array, perc: float = 2):
179180 np.array
180181 percentile of the signal
181182 """
182- signal = physio_or_numpy (signal )
183183 perc_val = np .percentile (signal , axis = 0 , q = perc )
184184
185185 return perc_val
0 commit comments