|
1 | 1 | """These functions compute various non-modality dependent signal processing metrics.""" |
2 | 2 | import numpy as np |
3 | 3 | import peakdet as pk |
| 4 | +from scipy import signal |
| 5 | +from scipy.misc import derivative |
4 | 6 |
|
5 | 7 | from .utils import physio_or_numpy |
6 | 8 |
|
@@ -230,3 +232,135 @@ def peak_amplitude(ph: pk.Physio): |
230 | 232 | peak_amplitude = peak_amp - trough_amp |
231 | 233 |
|
232 | 234 | return peak_amplitude |
| 235 | + |
| 236 | + |
| 237 | +def power_spectrum(data): |
| 238 | + """ |
| 239 | + Compute the power spectrum of the signal. |
| 240 | +
|
| 241 | + Parameters |
| 242 | + ---------- |
| 243 | + args : data |
| 244 | + a peakdet Physio object |
| 245 | +
|
| 246 | + Returns |
| 247 | + ------- |
| 248 | + tuple :obj: tuple |
| 249 | + A tuple containing as the first element the frequencies and the second element |
| 250 | + the power spectrum |
| 251 | + """ |
| 252 | + freqs, psd = signal.welch(data.data, data.fs) |
| 253 | + |
| 254 | + return freqs, psd |
| 255 | + |
| 256 | + |
| 257 | +def energy(data, lowf=None, highf=None): |
| 258 | + """ |
| 259 | + Calculate the energy in a certain frequency band. |
| 260 | +
|
| 261 | + Parameters |
| 262 | + ---------- |
| 263 | + args : data |
| 264 | + a peakdet Physio object |
| 265 | + args : lowf |
| 266 | + float that corresponds to the lower frequency band limit |
| 267 | + args : highf |
| 268 | + float that corresponds to the higher frequency band limit |
| 269 | +
|
| 270 | + Returns |
| 271 | + ------- |
| 272 | + Float :obj:`numpy.ndarray` |
| 273 | + Energy in the defined frequency band |
| 274 | + """ |
| 275 | + freqs, psd = power_spectrum(data) |
| 276 | + |
| 277 | + # Energy is defined as the square of the power spectral density |
| 278 | + energy_density = np.square(psd) |
| 279 | + |
| 280 | + if lowf is None or highf is None: |
| 281 | + # If frequencies are not precised, compute the total power |
| 282 | + idx_band = np.ones(psd.shape) |
| 283 | + else: |
| 284 | + # Define frequency band |
| 285 | + idx_band = np.logical_and(freqs >= lowf, freqs <= highf) |
| 286 | + |
| 287 | + energy = np.sum(energy_density[idx_band]) |
| 288 | + |
| 289 | + return energy |
| 290 | + |
| 291 | + |
| 292 | +def fALFF(data, lowf, highf): |
| 293 | + """ |
| 294 | + Calculate the fractional amplitude of low-frequency fluctuations (fALFF). |
| 295 | +
|
| 296 | + fALLF corresponds to the ratio of the energy in a frequency band over the |
| 297 | + total energy. |
| 298 | +
|
| 299 | + Parameters |
| 300 | + ---------- |
| 301 | + args : data |
| 302 | + a peakdet Physio object |
| 303 | + args : lowf |
| 304 | + float that corresponds to the lower frequency band limit |
| 305 | + args : highf |
| 306 | + float that corresponds to the higher frequency band limit |
| 307 | +
|
| 308 | + Returns |
| 309 | + ------- |
| 310 | + Float :obj:`numpy.ndarray` |
| 311 | + fALFF |
| 312 | + """ |
| 313 | + # Extract energy in the frequency band |
| 314 | + band_energy = energy(data.data, lowf=lowf, highf=highf) |
| 315 | + |
| 316 | + # Extract total energy |
| 317 | + total_energy = energy(data.data) |
| 318 | + |
| 319 | + # Compute the relative energy |
| 320 | + rel_energy = band_energy / total_energy |
| 321 | + |
| 322 | + return rel_energy |
| 323 | + |
| 324 | + |
| 325 | +def freq_energy(data, thr): |
| 326 | + """ |
| 327 | + Compute the minimum frequency with energy higher than the threshold. |
| 328 | +
|
| 329 | + Parameters |
| 330 | + ---------- |
| 331 | + args : data |
| 332 | + a peakdet Physio object |
| 333 | + args : thr |
| 334 | + Power threshold |
| 335 | +
|
| 336 | + Returns |
| 337 | + ------- |
| 338 | + Float :obj:`numpy.ndarray` |
| 339 | + Minimum frequency with power higher than the threshold |
| 340 | + """ |
| 341 | + energy_nd = energy(data.data) |
| 342 | + freq = np.argmax(energy_nd > thr) |
| 343 | + |
| 344 | + return freq |
| 345 | + |
| 346 | + |
| 347 | +def smoothness(data): |
| 348 | + """ |
| 349 | + Compute smoothness as the second derivative of the signal. |
| 350 | +
|
| 351 | + Parameters |
| 352 | + ---------- |
| 353 | + args : data |
| 354 | + a peakdet Physio object |
| 355 | +
|
| 356 | + Returns |
| 357 | + ------- |
| 358 | + Float :obj:`numpy.ndarray` |
| 359 | + Smoothness |
| 360 | + """ |
| 361 | + time = np.arange(0, len(data.data) / data.fs, 1 / data.fs) |
| 362 | + dx2 = np.empty(len(time)) |
| 363 | + for t in time: |
| 364 | + dx2[t] = derivative(data.data, t, n=2) |
| 365 | + |
| 366 | + return smoothness |
0 commit comments