-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathimproved_recommender.py
474 lines (401 loc) · 18 KB
/
improved_recommender.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
import argparse
import torch
import torch.nn as nn
import torch.optim as optim
import awswrangler as wr
from torch.utils.data import DataLoader, Dataset
from qdrant_client import QdrantClient
import time
import logging
import os
import json
import numpy as np
from tqdm import tqdm
from typing import Dict, List, Tuple, Optional, Union, Any
# Import our improvement modules
from utils.query_transformation import QueryTransformer
from utils.three_vector_embedding import ThreeVectorEmbedding
from utils.user_embeddings import UserEmbeddingSystem
from utils.two_tower_model import TwoTowerModel, InteractionDataset, TwoTowerTrainer
from utils.advanced_search import AdvancedSearch, SearchType, MetadataFilter
# Setup logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Define the UserTransformer Model (modified SASRec with improvements)
class SASRec(nn.Module):
def __init__(self, max_seq_len=50, embedding_dim=1024, num_layers=4, num_heads=8, dropout=0.2):
super(SASRec, self).__init__()
self.max_seq_len = max_seq_len
self.positional_embedding = nn.Embedding(max_seq_len, embedding_dim)
self.dropout = nn.Dropout(dropout)
# Improved transformer encoder with layer normalization
encoder_layer = nn.TransformerEncoderLayer(
d_model=embedding_dim,
nhead=num_heads,
dropout=dropout,
batch_first=True
)
self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
# Add normalization for improved training stability
self.layer_norm = nn.LayerNorm(embedding_dim)
def forward(self, x, mask):
batch_size, seq_len, _ = x.size()
# Create positional embeddings
positions = torch.arange(seq_len, device=x.device).unsqueeze(0).expand(batch_size, seq_len)
pos_emb = self.positional_embedding(positions)
# Add positional embeddings
x = x + pos_emb
x = self.dropout(x)
# Apply transformer encoder with mask
x = self.transformer_encoder(x, src_key_padding_mask=(mask == 0))
# Get last token representation for user embedding
last_token_idx = mask.sum(dim=1).long() - 1
batch_indices = torch.arange(batch_size, device=x.device)
user_repr = x[batch_indices, last_token_idx, :]
# Apply final normalization
user_repr = self.layer_norm(user_repr)
return user_repr
# Define Dataset Class with improvements
class RecommendationDataset(Dataset):
def __init__(
self,
train_parquet,
val_parquet=None,
chunk_size=10000,
qdrant_url="http://localhost",
qdrant_collection="images",
qdrant_api_key=None,
use_three_vector=True,
use_query_transformation=True,
max_seq_len=50
):
self.train_parquet = train_parquet
self.chunk_size = chunk_size
self.qdrant_url = qdrant_url
self.qdrant_collection = qdrant_collection
self.qdrant_api_key = qdrant_api_key
self.use_three_vector = use_three_vector
self.use_query_transformation = use_query_transformation
self.max_seq_len = max_seq_len
# Initialize Qdrant client
self.client = QdrantClient(url=qdrant_url, api_key=qdrant_api_key)
# Initialize query transformer if enabled
if use_query_transformation:
self.query_transformer = QueryTransformer()
# Initialize three-vector embedder if enabled
if use_three_vector:
self.vector_embedder = ThreeVectorEmbedding(
qdrant_url=qdrant_url,
qdrant_collection=qdrant_collection,
qdrant_api_key=qdrant_api_key
)
# Load validation data if provided
if val_parquet:
self.val_df = wr.s3.read_parquet(path=val_parquet).reset_index(drop=True)
self.val_map = dict(zip(self.val_df['user_idx'], self.val_df['val']))
else:
self.val_map = {}
def __iter__(self):
# Initialize progress monitoring
total_rows = 0
processed_rows = 0
start_time = time.time()
# Read training data in chunks
train_iter = wr.s3.read_parquet(path=self.train_parquet, chunked=True)
chunk_count = 0
for chunk in train_iter:
chunk_count += 1
chunk = chunk.reset_index(drop=True)
total_rows += len(chunk)
for idx, row in chunk.iterrows():
processed_rows += 1
# Log progress every 1000 rows
if processed_rows % 1000 == 0:
elapsed = time.time() - start_time
rate = processed_rows / elapsed if elapsed > 0 else 0
logger.info(f"Processing row {processed_rows}/{total_rows} (Chunk {chunk_count}, {rate:.2f} rows/sec)")
# Process and yield the row
yield self.process_row(row)
def process_row(self, row):
"""Process a row with improvements: query transformation and three-vector embedding"""
processed_row = row.copy()
# Apply query transformation if enabled
if self.use_query_transformation and 'query' in row:
processed_row['query'] = self.query_transformer.preprocess_query(row['query'])
# Apply three-vector embedding if enabled
if self.use_three_vector and 'item_id' in row:
# Get item vectors
item_vectors = self.vector_embedder.get_item_vectors(row['item_id'])
if item_vectors:
processed_row['image_vector'] = item_vectors['image_vector']
processed_row['text_vector'] = item_vectors['text_vector']
processed_row['metadata_vector'] = item_vectors['metadata_vector']
# Ensure training sequence is properly padded
if 'train_seq' in processed_row:
# Pad or truncate the sequence to max length
train_seq = processed_row['train_seq']
if len(train_seq) > self.max_seq_len:
processed_row['train_seq_padded'] = train_seq[-self.max_seq_len:]
processed_row['train_seq_mask'] = [1] * self.max_seq_len
else:
padding_len = self.max_seq_len - len(train_seq)
processed_row['train_seq_padded'] = train_seq + [0] * padding_len
processed_row['train_seq_mask'] = [1] * len(train_seq) + [0] * padding_len
return processed_row
# Improved training function
def train_model(
train_loader,
model,
optimizer,
scaler,
device,
epochs,
checkpoint_dir,
log_dir,
max_grad_norm,
qdrant_client,
qdrant_collection,
num_items,
use_two_tower=True, # Flag to enable two-tower model
user_embedding_system=None # Optional user embedding system
):
# Create directories if they don't exist
os.makedirs(checkpoint_dir, exist_ok=True)
os.makedirs(log_dir, exist_ok=True)
# Training metrics
metrics = {
'train_loss': [],
'val_loss': [],
'val_acc': []
}
# Two-tower model initialization if enabled
two_tower_model = None
if use_two_tower:
two_tower_model = TwoTowerModel(
embedding_dim=model.max_seq_len,
image_embedding_dim=1024,
text_embedding_dim=768
).to(device)
two_tower_optimizer = optim.Adam(two_tower_model.parameters(), lr=0.001)
# Training loop
model.train()
for epoch in range(epochs):
epoch_loss = 0.0
batch_count = 0
# Process batches
pbar = tqdm(train_loader, desc=f"Epoch {epoch+1}/{epochs}")
for batch in pbar:
# Prepare data
train_seq_padded = batch['train_seq_padded'].to(device)
train_seq_mask = batch['train_seq_mask'].to(device)
# Forward pass for main model (SASRec)
user_embeddings = model(train_seq_padded, train_seq_mask)
# Main model loss calculation and optimization
if 'user_idx' in batch:
user_idx = batch['user_idx'].to(device).float()
loss = torch.nn.functional.mse_loss(user_embeddings, user_idx)
else:
# Alternative loss for sequence prediction
loss = torch.nn.functional.cross_entropy(
user_embeddings,
train_seq_padded[:, -1]
)
# Additional two-tower model training if enabled
if use_two_tower and 'image_vector' in batch and 'text_vector' in batch:
# Extract vectors
image_vectors = batch['image_vector'].to(device)
text_vectors = batch['text_vector'].to(device)
# Train two-tower model
two_tower_optimizer.zero_grad()
_, _, similarity = two_tower_model(
user_embeddings,
image_vectors,
text_vectors
)
# Two-tower loss (assuming binary labels for now)
labels = torch.ones(similarity.shape[0], device=device)
two_tower_loss = torch.nn.functional.binary_cross_entropy_with_logits(
similarity, labels
)
# Combine losses
loss = loss + two_tower_loss
# Backward pass and optimization
optimizer.zero_grad()
loss.backward()
# Gradient clipping for stability
torch.nn.utils.clip_grad_norm_(model.parameters(), max_grad_norm)
optimizer.step()
# Update metrics
epoch_loss += loss.item()
batch_count += 1
# Update progress bar
pbar.set_postfix({"loss": loss.item()})
# Calculate average epoch loss
avg_epoch_loss = epoch_loss / batch_count if batch_count > 0 else 0
metrics['train_loss'].append(avg_epoch_loss)
# Log epoch results
logger.info(f"Epoch {epoch+1}/{epochs} - Loss: {avg_epoch_loss:.4f}")
# Save checkpoint
checkpoint_path = os.path.join(checkpoint_dir, f"model_epoch_{epoch+1}.pt")
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': avg_epoch_loss,
}, checkpoint_path)
# Update user embeddings if system is provided
if user_embedding_system is not None:
logger.info("Updating user embeddings...")
# This would extract user representations from the model and update the embedding system
# Placeholder for actual implementation
# Save final model
final_model_path = os.path.join(checkpoint_dir, "model_final.pt")
torch.save({
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'final_loss': metrics['train_loss'][-1],
}, final_model_path)
# Save training metrics
metrics_path = os.path.join(log_dir, "training_metrics.json")
with open(metrics_path, 'w') as f:
json.dump(metrics, f)
logger.info(f"Training completed. Final model saved to {final_model_path}")
return model
def main():
parser = argparse.ArgumentParser()
# Base parameters from original code
parser.add_argument("--train-parquet", type=str, required=True)
parser.add_argument("--val-parquet", type=str, required=True)
parser.add_argument("--epochs", type=int, default=10)
parser.add_argument("--batch-size", type=int, default=16)
parser.add_argument("--learning-rate", type=float, default=0.001)
parser.add_argument("--checkpoint-dir", type=str, default="checkpoints")
parser.add_argument("--log-dir", type=str, default="logs")
parser.add_argument("--chunk-size", type=int, default=10000)
parser.add_argument("--max-grad-norm", type=float, default=1.0)
parser.add_argument("--use-amp", type=bool, default=True)
parser.add_argument("--qdrant-url", type=str, default="http://localhost")
parser.add_argument("--qdrant-api-key", type=str, default=None)
parser.add_argument("--qdrant-collection", type=str, default="images")
# New parameters for improvements
parser.add_argument("--use-query-transformation", type=bool, default=True,
help="Use query transformation for preprocessing")
parser.add_argument("--use-three-vector", type=bool, default=True,
help="Use three-vector architecture for embeddings")
parser.add_argument("--use-user-embeddings", type=bool, default=True,
help="Use user embeddings in latent space")
parser.add_argument("--use-two-tower", type=bool, default=True,
help="Use two-tower model for training")
parser.add_argument("--use-advanced-search", type=bool, default=True,
help="Use advanced search techniques")
# Additional parameters for new features
parser.add_argument("--user-collection", type=str, default="users",
help="Qdrant collection for user embeddings")
parser.add_argument("--embedding-dim", type=int, default=1024,
help="Dimension of embeddings")
parser.add_argument("--search-type", type=str, choices=["vector", "text", "hybrid", "personalized"],
default="hybrid", help="Type of search to use")
parser.add_argument("--vector-weight", type=float, default=0.7,
help="Weight for vector search in hybrid mode")
parser.add_argument("--text-weight", type=float, default=0.3,
help="Weight for text search in hybrid mode")
args = parser.parse_args()
# Determine device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
logger.info(f"Using device: {device}")
# Initialize Qdrant client
qdrant_client = QdrantClient(url=args.qdrant_url, api_key=args.qdrant_api_key, timeout=20)
# Determine model dimensions
# Read first chunk to calculate max item ID
sample_chunk = wr.s3.read_parquet(path=args.train_parquet, chunked=True).__next__().reset_index(drop=True)
train_max = sample_chunk['train_seq_padded'].apply(lambda s: max(s) if len(s) > 0 else 0).max()
val_df = wr.s3.read_parquet(path=args.val_parquet)
val_max = val_df['val'].max()
num_items = int(max(train_max, val_max)) + 1
logger.info(f"Computed num_items: {num_items}")
# Initialize user embedding system if enabled
user_embedding_system = None
if args.use_user_embeddings:
logger.info("Initializing user embedding system...")
user_embedding_system = UserEmbeddingSystem(
vector_dim=args.embedding_dim,
qdrant_url=args.qdrant_url,
qdrant_collection=args.qdrant_collection,
user_collection=args.user_collection,
qdrant_api_key=args.qdrant_api_key
)
# Initialize advanced search if enabled
search_engine = None
if args.use_advanced_search:
logger.info("Initializing advanced search engine...")
search_engine = AdvancedSearch(
qdrant_url=args.qdrant_url,
collection_name=args.qdrant_collection,
api_key=args.qdrant_api_key,
vector_weight=args.vector_weight,
text_weight=args.text_weight
)
# Initialize dataset
train_dataset = RecommendationDataset(
args.train_parquet,
args.val_parquet,
args.chunk_size,
args.qdrant_url,
args.qdrant_collection,
args.qdrant_api_key,
use_three_vector=args.use_three_vector,
use_query_transformation=args.use_query_transformation
)
# Create data loader
train_loader = DataLoader(
train_dataset,
batch_size=args.batch_size,
shuffle=False,
num_workers=4
)
# Initialize model
model = SASRec(
max_seq_len=50,
embedding_dim=args.embedding_dim,
num_layers=4,
num_heads=8,
dropout=0.2
).to(device)
# Initialize optimizer
optimizer = optim.Adam(model.parameters(), lr=args.learning_rate)
# Initialize AMP scaler if using mixed precision
scaler = torch.cuda.amp.GradScaler() if (device.type == "cuda" and args.use_amp) else None
# Train the model
trained_model = train_model(
train_loader=train_loader,
model=model,
optimizer=optimizer,
scaler=scaler,
device=device,
epochs=args.epochs,
checkpoint_dir=args.checkpoint_dir,
log_dir=args.log_dir,
max_grad_norm=args.max_grad_norm,
qdrant_client=qdrant_client,
qdrant_collection=args.qdrant_collection,
num_items=num_items,
use_two_tower=args.use_two_tower,
user_embedding_system=user_embedding_system
)
# Example of how to use the trained model and improvements for inference
logger.info("Example search using trained model...")
if search_engine is not None:
# Example search query
query = "mountain landscape"
search_results = search_engine.search(
query=query,
search_type=SearchType(args.search_type),
limit=10
)
# Log results
logger.info(f"Search results for '{query}':")
for i, result in enumerate(search_results[:3]): # Show top 3 results
logger.info(f"{i+1}. ID: {result.id}, Score: {result.score:.4f}")
logger.info("Recommendation training and setup completed successfully.")
if __name__ == "__main__":
main()