-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathold_code.py
182 lines (153 loc) · 8.27 KB
/
old_code.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import argparse
import torch
import torch.nn as nn
import torch.optim as optim
import awswrangler as wr
from torch.utils.data import DataLoader
from qdrant_client import QdrantClient
# Import our custom modules
from data_preprocessing import QueryTransformer
from three_vector_embedding import ThreeVectorEncoder
from user_embeddings import UserEmbeddingModel
from two_tower_model import TwoTowerModel
from advanced_search import AdvancedSearch
# Define the UserTransformer Model (modified SASRec) for BPR
class SASRec(nn.Module):
def __init__(self, max_seq_len=50, embedding_dim=1024, num_layers=4, num_heads=8, dropout=0.2):
super(SASRec, self).__init__()
self.max_seq_len = max_seq_len
self.positional_embedding = nn.Embedding(max_seq_len, embedding_dim)
self.dropout = nn.Dropout(dropout)
encoder_layer = nn.TransformerEncoderLayer(d_model=embedding_dim, nhead=num_heads, dropout=dropout, batch_first=True)
self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
# Add CLIP space projection to align with content embeddings
self.clip_projection = nn.Linear(embedding_dim, embedding_dim)
def forward(self, x, mask):
batch_size, seq_len, _ = x.size()
positions = torch.arange(seq_len, device=x.device).unsqueeze(0).expand(batch_size, seq_len)
pos_emb = self.positional_embedding(positions)
x = x + pos_emb
x = self.dropout(x)
x = self.transformer_encoder(x, src_key_padding_mask=(mask == 0))
last_token_idx = mask.sum(dim=1).long() - 1
batch_indices = torch.arange(batch_size, device=x.device)
user_repr = x[batch_indices, last_token_idx, :]
# Project to CLIP embedding space for compatibility with content items
user_repr = self.clip_projection(user_repr)
return user_repr
# Define Dataset Class
class ReclrtableDataset(torch.utils.data.IterableDataset):
def __init__(self, train_parquet, val_parquet, chunk_size=10000, qdrant_url="http://localhost", qdrant_collection="images", qdrant_api_key=None):
self.train_parquet = train_parquet
self.chunk_size = chunk_size
self.qdrant_url = qdrant_url
self.qdrant_collection = qdrant_collection
self.qdrant_api_key = qdrant_api_key
self.val_df = wr.s3.read_parquet(path=val_parquet).reset_index(drop=True)
self.val_map = dict(zip(self.val_df['user_idx'], self.val_df['val']))
def __iter__(self):
client = QdrantClient(url=self.qdrant_url, api_key=self.qdrant_api_key)
train_iter = wr.s3.read_parquet(path=self.train_parquet, chunked=True)
chunk_count = 0
for chunk in train_iter:
chunk_count += 1
chunk = chunk.reset_index(drop=True)
for idx, row in chunk.iterrows():
if idx % 1000 == 0:
print(f"Processing row {idx} in chunk {chunk_count}")
yield row
# Improved Training Function with Contrastive Learning
def train_model(train_loader, model, optimizer, scaler, device, epochs, checkpoint_dir, log_dir, max_grad_norm, qdrant_client, qdrant_collection, num_items):
model.train()
query_transformer = QueryTransformer() # For transforming problematic queries
three_vector_encoder = ThreeVectorEncoder() # For encoding items
for epoch in range(epochs):
for batch in train_loader:
optimizer.zero_grad()
# Get user embeddings
user_emb = model(batch['train_seq_padded'].to(device), batch['train_seq_mask'].to(device))
# Get positive item embeddings
pos_items = batch['positive_items'].to(device)
pos_item_emb = three_vector_encoder(
images=batch['positive_images'].to(device),
text_descriptions=batch['positive_descriptions'].to(device),
metadata=batch['positive_metadata'].to(device)
)
# Get negative item embeddings (randomly sampled)
neg_items = batch['negative_items'].to(device)
neg_item_emb = three_vector_encoder(
images=batch['negative_images'].to(device),
text_descriptions=batch['negative_descriptions'].to(device),
metadata=batch['negative_metadata'].to(device)
)
# Compute contrastive loss
pos_logits = torch.sum(user_emb * pos_item_emb, dim=1)
neg_logits = torch.sum(user_emb * neg_item_emb, dim=1)
# BPR loss: -log(sigmoid(pos_logits - neg_logits))
loss = torch.mean(-torch.log(torch.sigmoid(pos_logits - neg_logits)))
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), max_grad_norm)
optimizer.step()
return model
# Main Function
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--train-parquet", type=str, required=True)
parser.add_argument("--val-parquet", type=str, required=True)
parser.add_argument("--epochs", type=int, default=10)
parser.add_argument("--batch-size", type=int, default=16)
parser.add_argument("--learning-rate", type=float, default=0.001)
parser.add_argument("--checkpoint-dir", type=str, default="checkpoints")
parser.add_argument("--log-dir", type=str, default="logs")
parser.add_argument("--chunk-size", type=int, default=10000)
parser.add_argument("--max-grad-norm", type=float, default=1.0)
parser.add_argument("--use-amp", type=bool, default=True)
parser.add_argument("--qdrant-url", type=str, default="http://localhost")
parser.add_argument("--qdrant-api-key", type=str, default=None)
parser.add_argument("--qdrant-collection", type=str, default="images")
# New arguments for advanced features
parser.add_argument("--use-query-transformation", type=bool, default=True)
parser.add_argument("--use-three-vector-architecture", type=bool, default=True)
parser.add_argument("--use-two-tower-model", type=bool, default=True)
parser.add_argument("--use-advanced-search", type=bool, default=True)
args = parser.parse_args()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
sample_chunk = wr.s3.read_parquet(path=args.train_parquet, chunked=True).__next__().reset_index(drop=True)
train_max = sample_chunk['train_seq_padded'].apply(lambda s: max(s) if len(s) > 0 else 0).max()
val_df = wr.s3.read_parquet(path=args.val_parquet)
val_max = val_df['val'].max()
num_items = int(max(train_max, val_max)) + 1
print(f"Computed num_items: {num_items}")
qdrant_client = QdrantClient(url=args.qdrant_url, api_key=args.qdrant_api_key, timeout=20)
train_dataset = ReclrtableDataset(args.train_parquet, args.val_parquet, args.chunk_size, args.qdrant_url, args.qdrant_collection, args.qdrant_api_key)
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=False, num_workers=4)
# Initialize the advanced search module
advanced_search = AdvancedSearch(
qdrant_client=qdrant_client,
collection_name=args.qdrant_collection,
use_query_transformation=args.use_query_transformation
)
# Initialize the user embedding model
if args.use_two_tower_model:
model = TwoTowerModel(embedding_dim=1024, num_layers=4, num_heads=8, dropout=0.2)
else:
model = SASRec(max_seq_len=50, embedding_dim=1024, num_layers=4, num_heads=8, dropout=0.2)
model.to(device)
optimizer = optim.Adam(model.parameters(), lr=args.learning_rate)
scaler = torch.cuda.amp.GradScaler() if (device.type == "cuda" and args.use_amp) else None
trained_model = train_model(
train_loader, model, optimizer, scaler, device,
epochs=args.epochs,
checkpoint_dir=args.checkpoint_dir,
log_dir=args.log_dir,
max_grad_norm=args.max_grad_norm,
qdrant_client=qdrant_client,
qdrant_collection=args.qdrant_collection,
num_items=num_items
)
# Save the trained model
torch.save(trained_model.state_dict(), f"{args.checkpoint_dir}/final_model.pt")
print("Model training complete. You can now use the advanced_search module for searching content.")
if __name__ == "__main__":
main()