-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtwo_tower_model.py
1104 lines (901 loc) · 39.8 KB
/
two_tower_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import argparse
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
import pandas as pd
import numpy as np
import json
import os
from typing import Dict, List, Tuple, Optional, Union
from datetime import datetime
from collections import defaultdict
from tqdm import tqdm
import random
from sklearn.metrics import roc_auc_score, average_precision_score
import matplotlib.pyplot as plt
from qdrant_client import QdrantClient
class UserTower(nn.Module):
"""
User tower for encoding user histories into embeddings.
"""
def __init__(self, embedding_dim: int = 512, max_seq_len: int = 50,
num_layers: int = 4, num_heads: int = 8, dropout: float = 0.2):
super(UserTower, self).__init__()
self.embedding_dim = embedding_dim
self.max_seq_len = max_seq_len
# Positional embedding for sequence modeling
self.positional_embedding = nn.Embedding(max_seq_len, embedding_dim)
# Dropout for regularization
self.dropout = nn.Dropout(dropout)
# Transformer encoder for sequence modeling
encoder_layer = nn.TransformerEncoderLayer(
d_model=embedding_dim,
nhead=num_heads,
dropout=dropout,
batch_first=True
)
self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
# Projection layer
self.projection = nn.Linear(embedding_dim, embedding_dim)
# Layer normalization for the output
self.layer_norm = nn.LayerNorm(embedding_dim)
def forward(self, item_embeddings: torch.Tensor, attention_mask: torch.Tensor) -> torch.Tensor:
"""
Forward pass to generate user embeddings from interaction history.
Args:
item_embeddings: Sequence of item embeddings the user has interacted with
attention_mask: Mask for padding in sequences
Returns:
User embedding
"""
batch_size, seq_len, _ = item_embeddings.size()
# Add positional encoding
positions = torch.arange(seq_len, device=item_embeddings.device).unsqueeze(0).expand(batch_size, seq_len)
pos_emb = self.positional_embedding(positions)
# Add positional embeddings to item embeddings
x = item_embeddings + pos_emb
# Apply dropout
x = self.dropout(x)
# Apply transformer encoder with masking
x = self.transformer_encoder(x, src_key_padding_mask=(attention_mask == 0))
# Get the embedding of the last non-padding item
last_token_idx = attention_mask.sum(dim=1).long() - 1
batch_indices = torch.arange(batch_size, device=item_embeddings.device)
user_repr = x[batch_indices, last_token_idx, :]
# Apply projection and normalization
user_repr = self.projection(user_repr)
user_repr = self.layer_norm(user_repr)
return user_repr
class ItemTower(nn.Module):
"""
Item tower for encoding items into embeddings.
"""
def __init__(self, embedding_dim: int = 512, num_layers: int = 2, dropout: float = 0.1):
super(ItemTower, self).__init__()
self.embedding_dim = embedding_dim
# Fully connected layers for processing item features
self.fc_layers = nn.Sequential(
nn.Linear(embedding_dim, embedding_dim),
nn.ReLU(),
nn.Dropout(dropout),
nn.Linear(embedding_dim, embedding_dim),
nn.LayerNorm(embedding_dim)
)
def forward(self, item_features: torch.Tensor) -> torch.Tensor:
"""
Forward pass to generate item embeddings.
Args:
item_features: Raw item features (e.g., from ThreeVectorEncoder)
Returns:
Item embedding
"""
return self.fc_layers(item_features)
class TwoTowerModel(nn.Module):
"""
Two-tower model for collaborative filtering that jointly learns
user and item representations.
"""
def __init__(self, embedding_dim: int = 512, max_seq_len: int = 50,
num_layers: int = 4, num_heads: int = 8, dropout: float = 0.2,
temperature: float = 0.07):
super(TwoTowerModel, self).__init__()
self.embedding_dim = embedding_dim
self.temperature = temperature
# User tower
self.user_tower = UserTower(
embedding_dim=embedding_dim,
max_seq_len=max_seq_len,
num_layers=num_layers,
num_heads=num_heads,
dropout=dropout
)
# Item tower
self.item_tower = ItemTower(
embedding_dim=embedding_dim,
num_layers=2,
dropout=dropout
)
def forward(self, user_histories: torch.Tensor, user_masks: torch.Tensor,
items: torch.Tensor) -> Dict[str, torch.Tensor]:
"""
Forward pass for both towers.
Args:
user_histories: Batch of user interaction histories
user_masks: Attention masks for user histories
items: Batch of items to encode
Returns:
Dictionary with user and item embeddings
"""
# Encode users
user_embeddings = self.user_tower(user_histories, user_masks)
# Encode items
item_embeddings = self.item_tower(items)
return {
'user_embeddings': user_embeddings,
'item_embeddings': item_embeddings
}
def compute_similarity(self, user_embeddings: torch.Tensor,
item_embeddings: torch.Tensor) -> torch.Tensor:
"""
Compute similarity between users and items.
Args:
user_embeddings: User embeddings
item_embeddings: Item embeddings
Returns:
Similarity scores
"""
# Compute dot product similarity
if user_embeddings.dim() == 2 and item_embeddings.dim() == 2:
# Compute similarity matrix between all users and items
similarity = torch.matmul(user_embeddings, item_embeddings.transpose(0, 1))
else:
# Compute similarity for corresponding pairs
similarity = torch.sum(user_embeddings * item_embeddings, dim=-1)
# Apply temperature scaling
similarity = similarity / self.temperature
return similarity
def compute_contrastive_loss(self, user_embeddings: torch.Tensor,
positive_items: torch.Tensor,
negative_items: torch.Tensor) -> torch.Tensor:
"""
Compute contrastive loss for training.
Args:
user_embeddings: User embeddings
positive_items: Items the users have positively interacted with
negative_items: Negative items for contrastive learning
Returns:
Contrastive loss value
"""
batch_size = user_embeddings.size(0)
# Encode items
positive_embeddings = self.item_tower(positive_items)
negative_embeddings = self.item_tower(negative_items)
# Compute positive similarities
pos_similarity = torch.sum(user_embeddings * positive_embeddings, dim=-1) / self.temperature
# Compute negative similarities
neg_similarity = torch.sum(user_embeddings.unsqueeze(1) * negative_embeddings, dim=-1) / self.temperature
# Combine positive and negative similarities
logits = torch.cat([pos_similarity.unsqueeze(1), neg_similarity], dim=1)
labels = torch.zeros(batch_size, dtype=torch.long, device=logits.device) # First item is positive
# Cross-entropy loss
loss = nn.functional.cross_entropy(logits, labels)
return loss
def generate_embeddings(self, user_histories: Optional[torch.Tensor] = None,
user_masks: Optional[torch.Tensor] = None,
items: Optional[torch.Tensor] = None) -> Dict[str, torch.Tensor]:
"""
Generate embeddings for users or items.
Args:
user_histories: Optional batch of user histories
user_masks: Optional attention masks for user histories
items: Optional batch of items
Returns:
Dictionary with generated embeddings
"""
results = {}
# Generate user embeddings if histories provided
if user_histories is not None and user_masks is not None:
results['user_embeddings'] = self.user_tower(user_histories, user_masks)
# Generate item embeddings if items provided
if items is not None:
results['item_embeddings'] = self.item_tower(items)
return results
def get_user_embedding(self, history_embeddings: torch.Tensor,
attention_mask: torch.Tensor) -> torch.Tensor:
"""
Get user embedding from interaction history.
Args:
history_embeddings: User interaction history embeddings
attention_mask: Attention mask for padding
Returns:
User embedding
"""
return self.user_tower(history_embeddings, attention_mask)
def get_item_embedding(self, item_features: torch.Tensor) -> torch.Tensor:
"""
Get item embedding from features.
Args:
item_features: Item features
Returns:
Item embedding
"""
return self.item_tower(item_features)
class InteractionDataset(Dataset):
"""
Dataset for training the two-tower model.
"""
def __init__(
self,
user_item_interactions,
user_histories,
item_embeddings,
user_metadata=None,
item_metadata=None,
negative_samples=4
):
"""
Initialize the dataset.
Args:
user_item_interactions: List of (user_id, item_id, label) tuples
user_histories: Dict mapping user_id to average history embedding
item_embeddings: Dict mapping item_id to (image_embedding, text_embedding)
user_metadata: Optional dict mapping user_id to metadata features
item_metadata: Optional dict mapping item_id to metadata features
negative_samples: Number of negative samples per positive example
"""
self.user_item_interactions = user_item_interactions
self.user_histories = user_histories
self.item_embeddings = item_embeddings
self.user_metadata = user_metadata
self.item_metadata = item_metadata
self.negative_samples = negative_samples
# Create set of all items for negative sampling
self.all_items = list(item_embeddings.keys())
# Map each user to their positive items for efficient negative sampling
self.user_to_items = defaultdict(set)
for user_id, item_id, _ in user_item_interactions:
self.user_to_items[user_id].add(item_id)
def __len__(self):
return len(self.user_item_interactions) * (1 + self.negative_samples)
def __getitem__(self, idx):
# Determine if this is a positive or negative sample
interaction_idx = idx // (1 + self.negative_samples)
is_negative = idx % (1 + self.negative_samples) != 0
user_id, item_id, label = self.user_item_interactions[interaction_idx]
# For negative samples, replace the item with a random one the user hasn't interacted with
if is_negative:
# Sample a random item the user hasn't interacted with
negative_item = random.choice(self.all_items)
while negative_item in self.user_to_items[user_id]:
negative_item = random.choice(self.all_items)
item_id = negative_item
label = 0 # Negative label
# Get user history embedding
user_history = self.user_histories.get(user_id, torch.zeros(128))
# Get item embeddings
image_embedding, text_embedding = self.item_embeddings.get(
item_id,
(torch.zeros(1024), torch.zeros(768))
)
# Get metadata if available
user_metadata = self.user_metadata.get(user_id, None) if self.user_metadata else None
item_metadata = self.item_metadata.get(item_id, None) if self.item_metadata else None
return {
'user_id': user_id,
'item_id': item_id,
'user_history': user_history,
'image_embedding': image_embedding,
'text_embedding': text_embedding,
'user_metadata': user_metadata,
'item_metadata': item_metadata,
'label': label
}
class TwoTowerTrainer:
"""
Trainer for the two-tower model.
"""
def __init__(
self,
model,
train_loader,
val_loader=None,
learning_rate=0.001,
weight_decay=0.0001,
device='cuda' if torch.cuda.is_available() else 'cpu'
):
self.model = model.to(device)
self.train_loader = train_loader
self.val_loader = val_loader
self.device = device
# Use binary cross-entropy loss
self.criterion = nn.BCEWithLogitsLoss()
# Create optimizer
self.optimizer = optim.Adam(
self.model.parameters(),
lr=learning_rate,
weight_decay=weight_decay
)
# Learning rate scheduler
self.scheduler = optim.lr_scheduler.ReduceLROnPlateau(
self.optimizer, mode='max', factor=0.5, patience=2
)
# Track metrics
self.metrics = {
'train_loss': [],
'val_loss': [],
'val_auc': [],
'val_ap': []
}
def train(self, epochs=10):
"""
Train the model.
Args:
epochs: Number of epochs to train for
Returns:
Dictionary of training metrics
"""
best_val_auc = 0.0
best_model = None
for epoch in range(epochs):
# Training
self.model.train()
train_loss = 0.0
progress_bar = tqdm(self.train_loader, desc=f"Epoch {epoch+1}/{epochs} [Train]")
for batch in progress_bar:
# Move data to device
user_history = batch['user_history'].float().to(self.device)
image_embedding = batch['image_embedding'].float().to(self.device)
text_embedding = batch['text_embedding'].float().to(self.device)
label = batch['label'].float().to(self.device)
# Get user and item metadata if available
user_metadata = batch.get('user_metadata', None)
if user_metadata is not None:
user_metadata = user_metadata.float().to(self.device)
item_metadata = batch.get('item_metadata', None)
if item_metadata is not None:
item_metadata = item_metadata.float().to(self.device)
# Forward pass
_, _, similarity = self.model(
user_history,
image_embedding,
text_embedding,
user_metadata,
item_metadata
)
# Compute loss
loss = self.criterion(similarity, label)
# Backward pass
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
train_loss += loss.item()
progress_bar.set_postfix({'loss': train_loss / (progress_bar.n + 1)})
avg_train_loss = train_loss / len(self.train_loader)
self.metrics['train_loss'].append(avg_train_loss)
# Validation
if self.val_loader:
val_loss, val_auc, val_ap = self.evaluate()
self.metrics['val_loss'].append(val_loss)
self.metrics['val_auc'].append(val_auc)
self.metrics['val_ap'].append(val_ap)
print(f"Epoch {epoch+1}/{epochs} - "
f"Train Loss: {avg_train_loss:.4f}, "
f"Val Loss: {val_loss:.4f}, "
f"Val AUC: {val_auc:.4f}, "
f"Val AP: {val_ap:.4f}")
# Update learning rate scheduler
self.scheduler.step(val_auc)
# Save best model
if val_auc > best_val_auc:
best_val_auc = val_auc
best_model = self.model.state_dict()
else:
print(f"Epoch {epoch+1}/{epochs} - Train Loss: {avg_train_loss:.4f}")
# Load best model if available
if best_model:
self.model.load_state_dict(best_model)
return self.metrics
def evaluate(self):
"""
Evaluate the model on the validation set.
Returns:
Tuple of (loss, AUC, average precision)
"""
self.model.eval()
val_loss = 0.0
all_labels = []
all_preds = []
with torch.no_grad():
progress_bar = tqdm(self.val_loader, desc="Validation")
for batch in progress_bar:
# Move data to device
user_history = batch['user_history'].float().to(self.device)
image_embedding = batch['image_embedding'].float().to(self.device)
text_embedding = batch['text_embedding'].float().to(self.device)
label = batch['label'].float().to(self.device)
# Get user and item metadata if available
user_metadata = batch.get('user_metadata', None)
if user_metadata is not None:
user_metadata = user_metadata.float().to(self.device)
item_metadata = batch.get('item_metadata', None)
if item_metadata is not None:
item_metadata = item_metadata.float().to(self.device)
# Forward pass
_, _, similarity = self.model(
user_history,
image_embedding,
text_embedding,
user_metadata,
item_metadata
)
# Compute loss
loss = self.criterion(similarity, label)
val_loss += loss.item()
# Store predictions and labels for metrics
all_labels.extend(label.cpu().numpy())
all_preds.extend(torch.sigmoid(similarity).cpu().numpy())
progress_bar.set_postfix({'loss': val_loss / (progress_bar.n + 1)})
avg_val_loss = val_loss / len(self.val_loader)
val_auc = roc_auc_score(all_labels, all_preds)
val_ap = average_precision_score(all_labels, all_preds)
return avg_val_loss, val_auc, val_ap
def save_model(self, path):
"""
Save the model to disk.
Args:
path: Path to save the model
"""
os.makedirs(os.path.dirname(path), exist_ok=True)
torch.save({
'model_state_dict': self.model.state_dict(),
'optimizer_state_dict': self.optimizer.state_dict(),
'metrics': self.metrics
}, path)
print(f"Model saved to {path}")
def plot_metrics(self, save_path=None):
"""
Plot training metrics.
Args:
save_path: Optional path to save the plot
"""
plt.figure(figsize=(12, 8))
# Plot loss
plt.subplot(2, 1, 1)
plt.plot(self.metrics['train_loss'], label='Train Loss')
if 'val_loss' in self.metrics and self.metrics['val_loss']:
plt.plot(self.metrics['val_loss'], label='Val Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()
plt.title('Training and Validation Loss')
# Plot validation metrics
if 'val_auc' in self.metrics and self.metrics['val_auc']:
plt.subplot(2, 1, 2)
plt.plot(self.metrics['val_auc'], label='AUC')
plt.plot(self.metrics['val_ap'], label='AP')
plt.xlabel('Epoch')
plt.ylabel('Metric')
plt.legend()
plt.title('Validation Metrics')
plt.tight_layout()
if save_path:
plt.savefig(save_path)
print(f"Metrics plot saved to {save_path}")
plt.show()
class EmbeddingProcessor:
"""
Process embeddings for the two-tower model.
"""
def __init__(
self,
qdrant_url="http://localhost",
user_collection="users",
item_collection="elements",
qdrant_api_key=None
):
self.qdrant_client = QdrantClient(url=qdrant_url, api_key=qdrant_api_key)
self.user_collection = user_collection
self.item_collection = item_collection
def get_item_embeddings(self, item_ids):
"""
Get item embeddings from Qdrant.
Args:
item_ids: List of item IDs
Returns:
Dictionary mapping item IDs to (image_embedding, text_embedding) tuples
"""
try:
# Retrieve items from Qdrant
items = self.qdrant_client.retrieve(
collection_name=self.item_collection,
ids=item_ids,
with_payload=True
)
item_embeddings = {}
for item in items:
item_id = item.id
# Get embeddings from vector and payload
image_embedding = torch.tensor(item.payload.get('image_vector', item.vector))
# Get text embedding if available, otherwise use zeros
text_embedding = item.payload.get('text_vector', None)
if text_embedding is None:
# Check for description to generate text embedding
description = item.payload.get('description', '')
if description:
# In a real system, you would generate a text embedding here
# For now, use zeros
text_embedding = torch.zeros(768)
else:
text_embedding = torch.zeros(768)
else:
text_embedding = torch.tensor(text_embedding)
item_embeddings[item_id] = (image_embedding, text_embedding)
return item_embeddings
except Exception as e:
print(f"Error retrieving item embeddings: {e}")
return {}
def get_user_histories(self, user_item_data):
"""
Get user history embeddings.
Args:
user_item_data: Dictionary mapping user IDs to lists of item IDs
Returns:
Dictionary mapping user IDs to average history embeddings
"""
user_histories = {}
# Get all unique item IDs
all_item_ids = set()
for items in user_item_data.values():
all_item_ids.update(items)
# Get item embeddings
item_embeddings = self.get_item_embeddings(list(all_item_ids))
# Compute average embedding for each user's history
for user_id, items in user_item_data.items():
# Get embeddings for items in the user's history
history_embeddings = []
for item_id in items:
if item_id in item_embeddings:
# Use image embedding as the item representation
image_embedding, _ = item_embeddings[item_id]
history_embeddings.append(image_embedding)
if history_embeddings:
# Compute average embedding
avg_embedding = torch.stack(history_embeddings).mean(dim=0)
user_histories[user_id] = avg_embedding
return user_histories
def prepare_training_data(self, user_item_data, val_fraction=0.2):
"""
Prepare training data for the two-tower model.
Args:
user_item_data: Dictionary mapping user IDs to lists of item IDs
val_fraction: Fraction of data to use for validation
Returns:
Tuple of (train_interactions, val_interactions, user_histories, item_embeddings)
"""
# Create positive interactions
interactions = []
for user_id, items in user_item_data.items():
for item_id in items:
interactions.append((user_id, item_id, 1)) # Positive label
# Shuffle interactions
random.shuffle(interactions)
# Split into train and validation
split_idx = int(len(interactions) * (1 - val_fraction))
train_interactions = interactions[:split_idx]
val_interactions = interactions[split_idx:]
# Get user histories
user_histories = self.get_user_histories(user_item_data)
# Get all unique item IDs
all_item_ids = set()
for user_id, items in user_item_data.items():
all_item_ids.update(items)
# Get item embeddings
item_embeddings = self.get_item_embeddings(list(all_item_ids))
return train_interactions, val_interactions, user_histories, item_embeddings
def create_data_loaders(
self,
train_interactions,
val_interactions,
user_histories,
item_embeddings,
batch_size=32,
negative_samples=4,
user_metadata=None,
item_metadata=None
):
"""
Create DataLoader objects for training and validation.
Args:
train_interactions: List of (user_id, item_id, label) tuples for training
val_interactions: List of (user_id, item_id, label) tuples for validation
user_histories: Dict mapping user IDs to history embeddings
item_embeddings: Dict mapping item IDs to embeddings
batch_size: Batch size for DataLoader
negative_samples: Number of negative samples per positive example
user_metadata: Optional dict mapping user IDs to metadata
item_metadata: Optional dict mapping item IDs to metadata
Returns:
Tuple of (train_loader, val_loader)
"""
# Create datasets
train_dataset = InteractionDataset(
train_interactions,
user_histories,
item_embeddings,
user_metadata,
item_metadata,
negative_samples
)
val_dataset = InteractionDataset(
val_interactions,
user_histories,
item_embeddings,
user_metadata,
item_metadata,
negative_samples
)
# Create dataloaders
train_loader = DataLoader(
train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=4,
pin_memory=True
)
val_loader = DataLoader(
val_dataset,
batch_size=batch_size,
shuffle=False,
num_workers=4,
pin_memory=True
)
return train_loader, val_loader
def upload_embeddings_to_qdrant(self, model, user_item_data, output_collection=None):
"""
Generate embeddings using the trained model and upload them to Qdrant.
Args:
model: Trained two-tower model
user_item_data: Dictionary mapping user IDs to lists of item IDs
output_collection: Name of the collection to upload embeddings to
(defaults to user_collection and item_collection)
Returns:
Number of user and item embeddings uploaded
"""
model.eval()
device = next(model.parameters()).device
# Get user histories
user_histories = self.get_user_histories(user_item_data)
# Get all unique item IDs
all_item_ids = set()
for user_id, items in user_item_data.items():
all_item_ids.update(items)
# Get item embeddings
raw_item_embeddings = self.get_item_embeddings(list(all_item_ids))
# Process user embeddings
user_embeddings = []
print("Generating user embeddings...")
for user_id, history_embedding in tqdm(user_histories.items()):
# Get user embedding
with torch.no_grad():
user_embedding = model.get_user_embedding(
history_embedding.unsqueeze(0).to(device)
)
# Create point for Qdrant
user_embeddings.append({
'id': user_id,
'vector': user_embedding.squeeze().cpu().numpy().tolist(),
'payload': {
'user_id': user_id,
'history_length': len(user_item_data[user_id])
}
})
# Process item embeddings
item_embeddings = []
print("Generating item embeddings...")
for item_id, (image_embedding, text_embedding) in tqdm(raw_item_embeddings.items()):
# Get item embedding
with torch.no_grad():
item_embedding = model.get_item_embedding(
image_embedding.unsqueeze(0).to(device),
text_embedding.unsqueeze(0).to(device)
)
# Create point for Qdrant
item_embeddings.append({
'id': item_id,
'vector': item_embedding.squeeze().cpu().numpy().tolist(),
'payload': {
'item_id': item_id
}
})
# Upload user embeddings
user_output = output_collection or f"{self.user_collection}_two_tower"
self._ensure_collection_exists(user_output, model.embedding_dim)
batch_size = 100
for i in range(0, len(user_embeddings), batch_size):
batch = user_embeddings[i:i+batch_size]
self.qdrant_client.upsert(
collection_name=user_output,
points=batch
)
# Upload item embeddings
item_output = output_collection or f"{self.item_collection}_two_tower"
if item_output != user_output:
self._ensure_collection_exists(item_output, model.embedding_dim)
for i in range(0, len(item_embeddings), batch_size):
batch = item_embeddings[i:i+batch_size]
self.qdrant_client.upsert(
collection_name=item_output,
points=batch
)
print(f"Uploaded {len(user_embeddings)} user embeddings to {user_output}")
print(f"Uploaded {len(item_embeddings)} item embeddings to {item_output}")
return len(user_embeddings), len(item_embeddings)
def _ensure_collection_exists(self, collection_name, vector_dim):
"""
Ensure the collection exists in Qdrant.
"""
try:
self.qdrant_client.get_collection(collection_name)
except Exception:
# Collection doesn't exist, create it
self.qdrant_client.create_collection(
collection_name=collection_name,
vectors_config={"size": vector_dim, "distance": "Cosine"}
)
print(f"Created new collection: {collection_name}")
def process_user_snapshot_data(snapshot_data_path):
"""
Process user data from the extracted snapshot.
Args:
snapshot_data_path: Path to the extracted snapshot data directory
Returns:
Dictionary mapping user_id to element_ids
"""
user_data = {}
segments_dir = os.path.join(snapshot_data_path, "0/segments")
# Check if directory exists
if not os.path.exists(segments_dir):
print(f"Segments directory not found: {segments_dir}")
return user_data
# Process each segment file
for filename in os.listdir(segments_dir):
if filename.endswith('.tar'):
segment_path = os.path.join(segments_dir, filename)
with tarfile.open(segment_path, 'r') as tar:
# Find payload files
payload_files = [m for m in tar.getmembers() if 'payload_storage/page_0.dat' in m.name]
for payload_file in payload_files:
f = tar.extractfile(payload_file)
if f:
data = f.read()
# Skip header (first 16 bytes)
payload_data = data[16:]
# Extract JSON data
start = 0
while start < len(payload_data):
try:
json_start = payload_data.index(b'{', start)
# Find matching closing brace
brace_count = 1
pos = json_start + 1
while brace_count > 0 and pos < len(payload_data):
if payload_data[pos] == ord('{'):
brace_count += 1
elif payload_data[pos] == ord('}'):
brace_count -= 1
pos += 1
if brace_count == 0:
json_data = payload_data[json_start:pos]
try:
# Parse JSON
user = json.loads(json_data.decode('utf-8'))
if 'user_id' in user and 'element_ids' in user:
user_data[user['user_id']] = user['element_ids']
except:
pass
start = pos
else:
start = json_start + 1
except ValueError:
break
return user_data
def main():
parser = argparse.ArgumentParser(description="Two-tower model for learning user and item embeddings")
parser.add_argument("--user-snapshot", type=str, default="Cosmos Users Snapshot Apr 1 2025.snapshot",
help="Path to user snapshot file")
parser.add_argument("--extracted-dir", type=str, default="extracted_users_data",
help="Directory for extracted snapshot data")
parser.add_argument("--model-output", type=str, default="models/two_tower_model.pt",
help="Path to save the trained model")
parser.add_argument("--plot-output", type=str, default="outputs/training_metrics.png",
help="Path to save training metrics plot")
parser.add_argument("--embedding-dim", type=int, default=128,
help="Dimension of the embedding space")
parser.add_argument("--batch-size", type=int, default=64,
help="Batch size for training")
parser.add_argument("--epochs", type=int, default=10,
help="Number of epochs to train")
parser.add_argument("--learning-rate", type=float, default=0.001,