This repository was archived by the owner on Dec 5, 2019. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
143 lines (112 loc) · 5.66 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import sys
import os
import argparse
# from azureml.logging import get_azureml_logger
import tensorflow as tf
import cv2
import numpy as np
import glob
import json
import myImageLibrary
import keras
# from tensorflow import keras
from keras.models import load_model
from keras import backend as K
from keras.models import Sequential
from keras.layers import Conv2D, ZeroPadding2D, Activation, Input, concatenate, Lambda, Dense
from keras.models import Model
from sklearn.metrics import confusion_matrix
from sklearn.preprocessing import OneHotEncoder
from sklearn.model_selection import train_test_split
# initialize the logger
# logger = get_azureml_logger()
# add experiment arguments
parser = argparse.ArgumentParser()
parser.add_argument('--epochs', help='Number of epochs', default=5,type=int)
args = parser.parse_args()
SQUARE_SIZE = 96 # size to which input images will be reshaped
EPOCHS = args.epochs
print("EPOCHS: {0}".format(EPOCHS))
# This is how you log scalar metrics
# logger.log("MyMetric", value)
# Create the outputs folder - save any outputs you want managed by AzureML here
os.makedirs('./outputs', exist_ok=True)
SHARED_FOLDER = os.environ["AZUREML_NATIVE_SHARE_DIRECTORY"]
subfolder = 'train' # local
MODEL_PATH = os.path.join(SHARED_FOLDER,subfolder,'facenet_nn4_small2_v7.h5') #path to facenet keras model
PRETRAINED_WEIGHTS_PATH = os.path.join(SHARED_FOLDER,subfolder,'pretrained_weights.h5') #pretrained weights
FACE_CASCADE = cv2.CascadeClassifier(os.path.join(SHARED_FOLDER,subfolder, 'haarcascade_frontalface_default.xml')) # for the face detector
print("model path: ",MODEL_PATH)
print("weights path: ",PRETRAINED_WEIGHTS_PATH)
def convert_to_one_hot(Y, C):
Y = np.eye(C)[Y.reshape(-1)].T
return Y
def face_list_to_array(face_list):
shape = list(face_list[0].shape)
shape[:0] = [len(face_list)]
faces_array = np.concatenate(face_list).reshape(shape)
return faces_array
# (1) READING AND PREPARING THE DATA
#images must be stored in the correct shared directory, in a folder called "images". This folder must contain subdirectories for images of each person. The name of the subdirectories must match the persons name;
#find all image folders in /SHARED_FOLDER/subfolder/images/
image_folder = os.path.join(SHARED_FOLDER,subfolder,'images')
list_dir = os.listdir(image_folder)
folders = []
for name in list_dir: #do not include files in folder list
if os.path.isdir(os.path.join(os.path.abspath(image_folder), name)):
folders.append(name)
print("{0} names: ".format(len(folders)),folders)
number_to_text_label = {}
face_list = []
number_labels = []
print("Reading and processing images...")
for i, folder in enumerate(folders):
print("{0}..".format(folder))
image_list = myImageLibrary.get_images(os.path.join(image_folder,folder))
processed_image_list = [np.around(myImageLibrary.resize_crop(image,SQUARE_SIZE).transpose(2,0,1)/255.0,decimals=12) for image in myImageLibrary.extract_faces_bulk(image_list,FACE_CASCADE)]
# processed = face extracted, normalized, resized and cropped, transposed to "channels first"
number_labels = number_labels+([i]*len(processed_image_list))
face_list = face_list+processed_image_list
number_to_text_label[str(i)] = folder
face_array = face_list_to_array(face_list)
label_array = np.array(number_labels)
output_onehot = convert_to_one_hot(label_array,len(folders)).T
X_train, X_test, Y_train, Y_test = train_test_split(face_array,output_onehot)
# We will evaluate the model accuracy on the test data. For simplicity, no hyperparameter tuning is done here.
print("Loading facenet model...(ignore warning, we compile it later)")
facemodel = load_model(MODEL_PATH)
# this will also log a warning: no training configuration found in file. This file only contains the model, no weights and no training config. Weights are loaded
# in the line below, training config will be set after the extra layer is added to the facenet network (see the SoftmaxModel() function; model.compile(..))
facemodel.load_weights(PRETRAINED_WEIGHTS_PATH)
def SoftmaxModel(facemodel,classes=5,input_shape=(3,96,96)):
X_input = Input(input_shape)
encoding = facemodel(X_input)
X = Activation('relu')(encoding)
X = Dense(classes,activation='softmax')(X)
model = Model(inputs=X_input,outputs=X)
model.compile(loss='categorical_crossentropy',optimizer='Adam',metrics=['accuracy'])
return model
print("Building classification model...")
softmaxmodel = SoftmaxModel(facemodel,classes=len(folders),input_shape=(3,SQUARE_SIZE,SQUARE_SIZE))
print("Fitting model...")
softmaxmodel.fit(x=X_train,y=Y_train,epochs=EPOCHS)
#saving to a single hdf5 file. The file will contain
#the architecture, weights, training config (loss, optimizer) and the state
#of the optimizer, allowing to resume training where you left off.
print("Saving model to outputs folder")
softmaxmodel.save(os.path.join("outputs","my_model.h5"))
with open(os.path.join("outputs","number_to_text_label.json"),"w") as jsonfile:
jsonfile.write(json.dumps(number_to_text_label))
print("To return names instead of indexes when testing, please retrieve number_to_text_label.json and save it in project directory before deploying with CLI.")
print("Saving model to shared folder")
softmaxmodel.save(os.path.join(SHARED_FOLDER,"my_model.h5"))
with open(os.path.join(SHARED_FOLDER,"number_to_text_label.json"),"w") as jsonfile:
jsonfile.write(json.dumps(number_to_text_label))
print("Done")
print("Evaluating fitted model")
accuracy = softmaxmodel.evaluate(x=X_test,y=Y_test)[1]
print("accuracy: ",accuracy)
# logger.log("accuracy",accuracy)
pred = softmaxmodel.predict(X_test)
cm = confusion_matrix(np.argmax(Y_test,axis=1),np.argmax(pred,axis=1))
print(cm)