|
| 1 | +import time |
| 2 | +from pimoroni import PID, REVERSED_DIR |
| 3 | +from inventor import Inventor, MOTOR_A, MOTOR_B, NUM_MOTORS, NUM_LEDS, GP0 |
| 4 | +from aye_arr.nec import NECReceiver |
| 5 | +from aye_arr.nec.remotes import PimoroniRemote |
| 6 | + |
| 7 | + |
| 8 | +""" |
| 9 | +A demonstration of driving both of Inventor 2040 W's motor outputs through a |
| 10 | +sequence of velocities, with the help of their attached encoders and PID control. |
| 11 | +
|
| 12 | +Press "User" to exit the program. |
| 13 | +""" |
| 14 | + |
| 15 | +# Wheel friendly names |
| 16 | +LEFT = MOTOR_A |
| 17 | +RIGHT = MOTOR_B |
| 18 | +NAMES = ["LEFT", "RIGHT"] |
| 19 | + |
| 20 | +# Constants |
| 21 | +UPDATES = 100 # How many times to update the motor per second |
| 22 | +UPDATE_RATE = 1 / UPDATES |
| 23 | +PRINT_DIVIDER = 4 # How many of the updates should be printed (i.e. 2 would be every other update) |
| 24 | + |
| 25 | +# Motor Constnats |
| 26 | +GEAR_RATIO = 50 # The gear ratio of the motors |
| 27 | +SPEED_SCALE = 5.4 # The scaling to apply to each motor's speed to match its real-world speed |
| 28 | +DRIVING_SPEED = 1.0 # The speed to drive the wheels at, for forward-backward. From 0.0 to SPEED_SCALE |
| 29 | +TURNING_SPEED = 0.5 # The speed to drive the wheels at, for left-right. From 0.0 to SPEED_SCALE |
| 30 | + |
| 31 | +# Motor PID values |
| 32 | +VEL_KP = 30.0 # Velocity proportional (P) gain |
| 33 | +VEL_KI = 0.0 # Velocity integral (I) gain |
| 34 | +VEL_KD = 0.4 # Velocity derivative (D) gain |
| 35 | + |
| 36 | +# Servo Constants (These values will be unique for each servo) |
| 37 | +GRIPPER_OPEN_PULSE = 1960 # The pulse width (in microseconds) to put the gripper in the open position |
| 38 | +GRIPPER_CLOSED_PULSE = 1040 # The pulse width (in microseconds) to put the gripper in the closed position |
| 39 | +GRIPPER_STEP = 0.1 # The percentage to move the gripper by when the button is pressed |
| 40 | + |
| 41 | +# LED Constants |
| 42 | +BRIGHTNESS = 0.5 # The brightness of the LEDs, from 0 to 1 |
| 43 | +RED = 255, 0, 0 |
| 44 | +GREEN = 0, 255, 0 |
| 45 | +BLUE = 0, 0, 255 |
| 46 | +CYAN = 0, 255, 255 |
| 47 | +MAGENTA = 255, 0, 255 |
| 48 | +YELLOW = 255, 255, 0 |
| 49 | +WARM_WHITE = 255, 192, 96 |
| 50 | +WHITE = 255, 255, 255 |
| 51 | +COOL_WHITE = 96, 192, 255 |
| 52 | +BLACK = 0, 0, 0 |
| 53 | + |
| 54 | + |
| 55 | +# Create a new Inventor object |
| 56 | +board = Inventor(motor_gear_ratio=GEAR_RATIO) |
| 57 | + |
| 58 | +# Set the speed scale of the motors |
| 59 | +board.motors[LEFT].speed_scale(SPEED_SCALE) |
| 60 | +board.motors[RIGHT].speed_scale(SPEED_SCALE) |
| 61 | + |
| 62 | +# Reverse the direction of the left motor and encoder |
| 63 | +board.motors[LEFT].direction(REVERSED_DIR) |
| 64 | +board.encoders[LEFT].direction(REVERSED_DIR) |
| 65 | + |
| 66 | +# Create PID objects for velocity control |
| 67 | +vel_pids = [PID(VEL_KP, VEL_KI, VEL_KD, UPDATE_RATE) for i in range(NUM_MOTORS)] |
| 68 | + |
| 69 | +# Set up the first servo for the gripper |
| 70 | +gripper = board.servos[0] |
| 71 | +cal = gripper.calibration() |
| 72 | +cal.apply_two_pairs(GRIPPER_CLOSED_PULSE, GRIPPER_OPEN_PULSE, 0, 1) |
| 73 | +gripper.calibration(cal) |
| 74 | + |
| 75 | + |
| 76 | +# Functions for driving in common directions |
| 77 | +def drive_fwd_back(speed): |
| 78 | + vel_pids[LEFT].setpoint = speed |
| 79 | + vel_pids[RIGHT].setpoint = speed |
| 80 | + |
| 81 | + |
| 82 | +def turn_left_right(speed): |
| 83 | + vel_pids[LEFT].setpoint = -speed |
| 84 | + vel_pids[RIGHT].setpoint = speed |
| 85 | + |
| 86 | + |
| 87 | +def stop_driving(): |
| 88 | + vel_pids[LEFT].setpoint = 0 |
| 89 | + vel_pids[RIGHT].setpoint = 0 |
| 90 | + |
| 91 | + |
| 92 | +# Function for operating the gripper servo |
| 93 | +def move_gripper(step): |
| 94 | + val = max(min(gripper.value() + step, 1), 0) |
| 95 | + gripper.value(val) |
| 96 | + |
| 97 | + |
| 98 | +# Functions for setting LED colours |
| 99 | +def set_all_leds(colour): |
| 100 | + r = int(colour[0] * BRIGHTNESS) |
| 101 | + g = int(colour[1] * BRIGHTNESS) |
| 102 | + b = int(colour[2] * BRIGHTNESS) |
| 103 | + for i in range(NUM_LEDS): |
| 104 | + board.leds.set_rgb(i, r, g, b) |
| 105 | + |
| 106 | + |
| 107 | +def set_rainbow(): |
| 108 | + for i in range(NUM_LEDS): |
| 109 | + hue = float(i) / NUM_LEDS |
| 110 | + board.leds.set_hsv(i, hue, 1.0, BRIGHTNESS) |
| 111 | + |
| 112 | + |
| 113 | +# Bind functions to each of the Pimoroni remote's buttons. |
| 114 | +# Releasing a direction button will the robot to stop driving |
| 115 | +remote = PimoroniRemote() |
| 116 | +remote.bind("UP", (drive_fwd_back, DRIVING_SPEED), on_release=stop_driving) |
| 117 | +remote.bind("DOWN", (drive_fwd_back, -DRIVING_SPEED), on_release=stop_driving) |
| 118 | +remote.bind("LEFT", (turn_left_right, TURNING_SPEED), on_release=stop_driving) |
| 119 | +remote.bind("RIGHT", (turn_left_right, -TURNING_SPEED), on_release=stop_driving) |
| 120 | +remote.bind("ANTICLOCK", (move_gripper, GRIPPER_STEP)) |
| 121 | +remote.bind("CLOCKWISE", (move_gripper, -GRIPPER_STEP)) |
| 122 | +remote.bind("OK/STOP", (set_all_leds, BLACK)) |
| 123 | +remote.bind("1/RED", (set_all_leds, RED)) |
| 124 | +remote.bind("2/GREEN", (set_all_leds, GREEN)) |
| 125 | +remote.bind("3/BLUE", (set_all_leds, BLUE)) |
| 126 | +remote.bind("4/CYAN", (set_all_leds, CYAN)) |
| 127 | +remote.bind("5/MAGENTA", (set_all_leds, MAGENTA)) |
| 128 | +remote.bind("6/YELLOW", (set_all_leds, YELLOW)) |
| 129 | +remote.bind("7/WARM", (set_all_leds, WARM_WHITE)) |
| 130 | +remote.bind("8/WHITE", (set_all_leds, WHITE)) |
| 131 | +remote.bind("9/COOL", (set_all_leds, COOL_WHITE)) |
| 132 | +remote.bind("0/RAINBOW", set_rainbow) |
| 133 | + |
| 134 | + |
| 135 | +# Set up the IR receiver on GP0, using PIO 1 and SM 0 |
| 136 | +receiver = NECReceiver(GP0, 1, 0) |
| 137 | +receiver.bind(remote) |
| 138 | + |
| 139 | +# Variables |
| 140 | +captures = [None] * NUM_MOTORS |
| 141 | + |
| 142 | +try: |
| 143 | + # Enable the motors and servo to get started |
| 144 | + for m in board.motors: |
| 145 | + m.enable() |
| 146 | + gripper.enable() |
| 147 | + |
| 148 | + # Start listening for IR remote signals |
| 149 | + receiver.start() |
| 150 | + |
| 151 | + # Continually move the motor until the user switch is pressed |
| 152 | + while not board.switch_pressed(): |
| 153 | + |
| 154 | + # Decode any received IR signals from since we last checked |
| 155 | + receiver.decode() |
| 156 | + |
| 157 | + # Capture the state of all the encoders |
| 158 | + for i in range(NUM_MOTORS): |
| 159 | + captures[i] = board.encoders[i].capture() |
| 160 | + |
| 161 | + for i in range(NUM_MOTORS): |
| 162 | + # Calculate the acceleration to apply to the motor to move it closer to the velocity setpoint |
| 163 | + accel = vel_pids[i].calculate(captures[i].revolutions_per_second) |
| 164 | + |
| 165 | + # Accelerate or decelerate the motor |
| 166 | + board.motors[i].speed(board.motors[i].speed() + (accel * UPDATE_RATE)) |
| 167 | + |
| 168 | + time.sleep(UPDATE_RATE) |
| 169 | + |
| 170 | +finally: |
| 171 | + # Stop the motors and servo |
| 172 | + for m in board.motors: |
| 173 | + m.disable() |
| 174 | + gripper.disable() |
| 175 | + |
| 176 | + # Turn off the LED bars |
| 177 | + board.leds.clear() |
| 178 | + |
| 179 | + # Stop the IR receiver |
| 180 | + receiver.stop() |
0 commit comments