|
| 1 | +#!/usr/bin/env python3 |
| 2 | +import os |
| 3 | +import chromadb |
| 4 | +from pathlib import Path |
| 5 | +import openai |
| 6 | +from dotenv import load_dotenv |
| 7 | + |
| 8 | +# Load environment variables |
| 9 | +load_dotenv() |
| 10 | + |
| 11 | + |
1 | 12 | def main(): |
2 | | - print("Hello from ignition-rag-agent!") |
| 13 | + print("Starting codebase indexing with OpenAI embeddings...") |
| 14 | + |
| 15 | + # Initialize OpenAI client |
| 16 | + openai_api_key = os.getenv("OPENAI_API_KEY") |
| 17 | + client = openai.OpenAI(api_key=openai_api_key) |
| 18 | + print("Initialized OpenAI client") |
| 19 | + |
| 20 | + # Initialize Chroma client - using PersistentClient for local storage |
| 21 | + chroma_client = chromadb.PersistentClient(path="./chroma_index") |
| 22 | + print("Initialized Chroma client") |
| 23 | + |
| 24 | + # Get or create collection |
| 25 | + collection_name = "codebase" |
| 26 | + # Delete if exists |
| 27 | + try: |
| 28 | + chroma_client.delete_collection(collection_name) |
| 29 | + print(f"Deleted existing collection: {collection_name}") |
| 30 | + except Exception: |
| 31 | + pass |
| 32 | + |
| 33 | + collection = chroma_client.create_collection(name=collection_name) |
| 34 | + print(f"Created collection: {collection_name}") |
| 35 | + |
| 36 | + # Find Python files in the project (excluding .venv directory) |
| 37 | + project_path = Path(".") |
| 38 | + py_files = [] |
| 39 | + for path in project_path.rglob("*.py"): |
| 40 | + if ".venv" not in str(path) and "__pycache__" not in str(path): |
| 41 | + py_files.append(str(path)) |
| 42 | + |
| 43 | + print(f"Found {len(py_files)} Python files in the project") |
| 44 | + |
| 45 | + # Process each file |
| 46 | + doc_count = 0 |
| 47 | + for file_path in py_files: |
| 48 | + try: |
| 49 | + with open(file_path, "r") as f: |
| 50 | + content = f.read() |
| 51 | + |
| 52 | + # Skip empty files |
| 53 | + if not content.strip(): |
| 54 | + print(f"Skipping empty file: {file_path}") |
| 55 | + continue |
| 56 | + |
| 57 | + # Generate embedding using OpenAI |
| 58 | + response = client.embeddings.create( |
| 59 | + input=content, model="text-embedding-3-small" |
| 60 | + ) |
| 61 | + embedding = response.data[0].embedding |
| 62 | + |
| 63 | + # Add to collection |
| 64 | + file_id = file_path.replace("/", "_") |
| 65 | + collection.add( |
| 66 | + ids=[file_id], |
| 67 | + documents=[content], |
| 68 | + embeddings=[embedding], |
| 69 | + metadatas=[{"source": file_path}], |
| 70 | + ) |
| 71 | + doc_count += 1 |
| 72 | + |
| 73 | + print(f"Indexed {file_path}") |
| 74 | + except Exception as e: |
| 75 | + print(f"Error processing {file_path}: {e}") |
| 76 | + |
| 77 | + print(f"Indexing complete. Collection now has {collection.count()} documents") |
| 78 | + print(f"Total documents indexed: {doc_count}") |
| 79 | + |
| 80 | + # Test a simple query |
| 81 | + query_text = "How does the indexer handle JSON files?" |
| 82 | + query_response = client.embeddings.create( |
| 83 | + input=query_text, model="text-embedding-3-small" |
| 84 | + ) |
| 85 | + query_embedding = query_response.data[0].embedding |
| 86 | + |
| 87 | + results = collection.query(query_embeddings=[query_embedding], n_results=3) |
| 88 | + |
| 89 | + print("\nTest Query Results:") |
| 90 | + print(f"Query: '{query_text}'") |
| 91 | + for i, (doc, metadata) in enumerate( |
| 92 | + zip(results["documents"][0], results["metadatas"][0]) |
| 93 | + ): |
| 94 | + print(f"\nResult {i+1} from {metadata['source']}:") |
| 95 | + print(f"{doc[:150]}...") |
3 | 96 |
|
4 | 97 |
|
5 | 98 | if __name__ == "__main__": |
|
0 commit comments