-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathcategorize.py
243 lines (195 loc) · 7.04 KB
/
categorize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
from scrape_filter_link import Scrape_Filter, LangError, fetch_bookmarks
from get_corpus import DIR_LOC, CORPUSES
from glob import glob
from string import punctuation
from math import log10
import json
from random import shuffle
from time import time
from collections import Counter
import os
class Categorize():
def __init__(self):
self.scrape = Scrape_Filter()
self.layout = json.load(open(CORPUSES))
self.bookmark_data = dict()
def load_bookmarks_data(self, bookmark_data):
self.bookmark_data = bookmark_data
def get_vocabulary(self, link):
desc_keywords = self.bookmark_data[link]["desc"]
title = self.bookmark_data[link]["title"]
content = self.bookmark_data[link]["desc"]
wiki, keywords, desc = str(), str(), list()
if desc_keywords == None and content == list() and title != str():
wiki = self.scrape.get_wikipedia(title)
else:
try:
keywords = desc_keywords['keywords'][0]
except:
pass
try:
desc = desc_keywords['desc']
except:
pass
return {
'title': title,
'keywords': keywords,
'wiki': wiki,
'desc': desc,
'content': content
}
def convert_vocabulary(self, vocab):
bookmark_vocab = str()
bookmark_vocab += ' ' + vocab['title']
bookmark_vocab += ' ' + vocab['keywords']
bookmark_vocab += ' ' + vocab['wiki']
for content in vocab['desc']:
bookmark_vocab += ' ' + content
# Commenting the below tow lines will drastically increase the speed
# for content in vocab['content']:
# bookmark_vocab += ' ' + content
for punct in punctuation:
if punct in bookmark_vocab:
bookmark_vocab.replace(punct, ' ')
return bookmark_vocab
def get_corpus_vocab(self, directory):
json_files = glob(directory + '*.json')
vocab = str()
for file in json_files:
vocab += ' ' + json.load(open(file))['text']
for punct in punctuation:
if punct in vocab:
vocab.replace(punct, ' ')
return vocab.lower(), len(json_files)
def get_entire_corpus_vocab(self):
corpus_dir = glob(DIR_LOC + '*/')
vocab = str()
for directory in corpus_dir:
corpus_vocab, len_corpus = self.get_corpus_vocab(directory)
vocab += ' ' + corpus_vocab
return vocab
def get_non_corpus_vocab(self, directory):
corpus_dir = glob(DIR_LOC + '*/')
corpus_dir = [folder for folder in corpus_dir
if folder.find(directory) == -1]
vocab = str()
for directory in corpus_dir:
corpus_vocab, len_corpus = self.get_corpus_vocab(directory)
vocab += ' ' + corpus_vocab
for punct in punctuation:
if punct in vocab:
vocab.replace(punct, ' ')
return vocab
def naive_bayes(self, bookmark_vocab):
bookmark_vocab = bookmark_vocab.lower().split(' ')
corpus_dir = glob(DIR_LOC + '*/')
total_len_corpus = len(glob(DIR_LOC + '*/*.json'))
entire_corpus = self.get_entire_corpus_vocab()
vocab_entire_corpus = len(set(entire_corpus.split(' ')))
target_dir = str()
target_dir_score, target_dir_delta = -100000000000, 100000000000
for corpus in corpus_dir:
corpus_vocab, len_corpus = self.get_corpus_vocab(corpus)
corpus_non_vocab = self.get_non_corpus_vocab(corpus)
p_vj = len_corpus/total_len_corpus
corpus_is = log10(p_vj)
corpus_is_not = log10(1 - p_vj)
for word in bookmark_vocab:
word_match = corpus_vocab.count(word)
words_corpus = len(corpus_vocab.split(' '))
p_is = log10((word_match + 1)/(words_corpus + vocab_entire_corpus))
non_word_match = corpus_non_vocab.count(word)
non_words_corpus = len(corpus_non_vocab.split(' '))
p_is_not = log10((non_word_match + 1)/(non_words_corpus + vocab_entire_corpus))
corpus_is += p_is
corpus_is_not += p_is_not
delta = abs(corpus_is_not - corpus_is)
if corpus_is > corpus_is_not or delta < 10:
if ((corpus_is > target_dir_score) or
(delta < target_dir_delta and
abs(target_dir_score - corpus_is) <= 1)):
target_dir = corpus
target_dir_score = corpus_is
target_dir_delta = delta
return target_dir, target_dir_score
def naive_bayes2(self, bookmark_vocab):
bookmark_vocab = [w for w in bookmark_vocab.lower().split(" ") if len(w) > 1]
corpus_dir = glob(DIR_LOC + "*/")
total_len_corpus = len(glob(DIR_LOC + "*/*.json"))
entire_corpus = self.get_entire_corpus_vocab()
vocab_entire_corpus = len(set(entire_corpus.split(" ")))
target_dir = str()
target_dir_score, target_dir_delta = -100000000000, 100000000000
for corpus in corpus_dir:
cache_path = os.path.join(corpus, "cache.json.ext")
if os.path.exists(cache_path):
with open(cache_path, "r") as f:
data = json.load(f)
frequency_corpus_vocab=data["frequency_corpus_vocab"]
frequency_corpus_non_vocab=data["frequency_corpus_non_vocab"]
words_corpus=data["words_corpus"]
non_words_corpus=data["non_words_corpus"]
corpus_is=data["corpus_is"]
corpus_is_not=data["corpus_is_not"]
else:
corpus_vocab, len_corpus = self.get_corpus_vocab(corpus)
corpus_non_vocab = self.get_non_corpus_vocab(corpus)
p_vj = len_corpus / total_len_corpus
corpus_is = log10(p_vj)
corpus_is_not = log10(1 - p_vj)
corpus_vocab = [w for w in corpus_vocab.split() if len(w) > 1]
corpus_non_vocab = [w for w in corpus_non_vocab.split() if len(w) > 1]
frequency_corpus_vocab = Counter(corpus_vocab)
frequency_corpus_non_vocab = Counter(corpus_non_vocab)
words_corpus = len(corpus_vocab)
non_words_corpus = len(corpus_non_vocab)
data = {
"frequency_corpus_vocab": frequency_corpus_vocab,
"frequency_corpus_non_vocab": frequency_corpus_non_vocab,
"words_corpus": words_corpus,
"non_words_corpus": non_words_corpus,
"corpus_is": corpus_is,
"corpus_is_not": corpus_is_not,
}
with open(cache_path, "w") as f:
json.dump(data, f,indent=2)
for word in bookmark_vocab:
word_match = frequency_corpus_vocab.get(word, 0)
p_is = log10((word_match + 1) / (words_corpus + vocab_entire_corpus))
non_word_match = frequency_corpus_non_vocab.get(word, 0)
p_is_not = log10(
(non_word_match + 1) / (non_words_corpus + vocab_entire_corpus)
)
corpus_is += p_is
corpus_is_not += p_is_not
delta = abs(corpus_is_not - corpus_is)
if corpus_is > corpus_is_not or delta < 10:
if (corpus_is > target_dir_score) or (
delta < target_dir_delta and abs(target_dir_score - corpus_is) <= 1
):
target_dir = corpus
target_dir_score = corpus_is
target_dir_delta = delta
return target_dir, target_dir_score
if __name__ == '__main__':
obj = Categorize()
links = json.load(open('links.json'))
# links = ["https://old.reddit.com/"]
result = {}
BOOKMARKS_DATA = fetch_bookmarks(links)
obj.load_bookmarks_data(BOOKMARKS_DATA)
# shuffle(links)
for link in links[:10]:
try:
vocab = obj.get_vocabulary(link)
bookmark_vocab = obj.convert_vocabulary(vocab)
category = obj.naive_bayes2(bookmark_vocab)
print(link + ' : ' + category[0])
result[link] = category[0]
except LangError:
print(link + ' : ' + "Failed, Language not english!")
except Exception as err:
print(link + ' : ' + "Failed")
print(err)
with open('result.json', 'w') as fp:
json.dump(result, fp)