-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
53 lines (42 loc) · 1.31 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import os
import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
from datasets import load_dataset
from pytube import YouTube
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model_id = "openai/whisper-large-v3"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=128,
chunk_length_s=30,
batch_size=16,
return_timestamps=True,
torch_dtype=torch_dtype,
device=device,
)
# Check for yt video
mp3_file_exists = os.path.exists("mamba.mp3")
# Download yt video if does not exist yet
yt = YouTube("https://www.youtube.com/watch?v=ouF-H35atOY")
title = yt.title
video = (
yt.streams.filter(only_audio=True)
.first()
.download(filename="mamba_a_replacement_for_transformers")
)
dataset = load_dataset(
"mp3",
data_files="mamba_a_replacement_for_transformers.mp3",
)
sample = dataset[0]["audio"]
result = pipe(sample, return_timestamps=True)
print(result)