-
Notifications
You must be signed in to change notification settings - Fork 103
/
Copy pathkeccakf32_memory.asm
657 lines (579 loc) · 29.5 KB
/
keccakf32_memory.asm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
use std::array;
use std::utils;
use std::utils::unchanged_until;
use std::utils::force_bool;
use std::convert::expr;
use std::convert::int;
use std::convert::fe;
use std::prelude::set_hint;
use std::prelude::Query;
use std::prover::eval;
use std::prover::compute_from_multi;
use std::machines::large_field::memory::Memory;
machine Keccakf32Memory(mem: Memory) with
latch: final_step,
call_selectors: sel,
{
/*
------------- Begin memory read / write ---------------
Additional columns compared to the non-memory version:
- 1 column for user input address (of first byte of input).
- 1 column for user output address (of first byte of output).
- 1 column for time step.
Overall, given that there are 2,600+ columns in the non-memory version, this isn't a huge cost
Methodology description:
1. The latch with the input and output addresses + time step is in the last row of each block.
2. User input address is copied to the first row.
3. Input addresses for all bytes are calculated from user input address in the first row.
4. Load all input bytes from memory to the preimage columns.
5. Keccak is computed from top to bottom.
6. Output addresses for all bytes are calculated from user output address in the last row.
7. Store all output bytes from keccak computation columns to memory.
Essentially, we conduct all memory reads in the first row and all memory writes in the last row.
Our current methodology performs all memory reads at once in the first row, then immediately does the keccak computation,
and finally performs all memory writes at once in the last row, and thus only requires one pass with auto witgen.
Though note that input address need to be first copied from the last row to the first row.
*/
operation keccakf32_memory input_addr, output_addr, time_step ->;
// Get an intermediate column that indicates that we're in an
// actual block, not a default block. Its value is constant
// within the block.
let used = array::sum(sel);
array::map(sel, |s| unchanged_until(s, final_step + is_last));
std::utils::force_bool(used);
let first_step_used: expr = used * first_step;
let final_step_used: expr = used * final_step;
// Repeat the time step and input address in the whole block.
col witness time_step;
unchanged_until(time_step, final_step + is_last);
// Input address for the first byte of input array from the user.
// Copied from user input in the last row to the first row.
col witness input_addr;
unchanged_until(input_addr, final_step + is_last);
// Output address for the first byte of output array from the user.
// Used in the last row directly from user input.
col witness output_addr;
// Load memory
// Specifically, this keccakf32 machine accepts little endian inputs in memory.
link if first_step_used ~> preimage[0] = mem.mload(input_addr, time_step);
link if first_step_used ~> preimage[1] = mem.mload(input_addr + 4, time_step);
link if first_step_used ~> preimage[2] = mem.mload(input_addr + 8, time_step);
link if first_step_used ~> preimage[3] = mem.mload(input_addr + 12, time_step);
link if first_step_used ~> preimage[4] = mem.mload(input_addr + 16, time_step);
link if first_step_used ~> preimage[5] = mem.mload(input_addr + 20, time_step);
link if first_step_used ~> preimage[6] = mem.mload(input_addr + 24, time_step);
link if first_step_used ~> preimage[7] = mem.mload(input_addr + 28, time_step);
link if first_step_used ~> preimage[8] = mem.mload(input_addr + 32, time_step);
link if first_step_used ~> preimage[9] = mem.mload(input_addr + 36, time_step);
link if first_step_used ~> preimage[10] = mem.mload(input_addr + 40, time_step);
link if first_step_used ~> preimage[11] = mem.mload(input_addr + 44, time_step);
link if first_step_used ~> preimage[12] = mem.mload(input_addr + 48, time_step);
link if first_step_used ~> preimage[13] = mem.mload(input_addr + 52, time_step);
link if first_step_used ~> preimage[14] = mem.mload(input_addr + 56, time_step);
link if first_step_used ~> preimage[15] = mem.mload(input_addr + 60, time_step);
link if first_step_used ~> preimage[16] = mem.mload(input_addr + 64, time_step);
link if first_step_used ~> preimage[17] = mem.mload(input_addr + 68, time_step);
link if first_step_used ~> preimage[18] = mem.mload(input_addr + 72, time_step);
link if first_step_used ~> preimage[19] = mem.mload(input_addr + 76, time_step);
link if first_step_used ~> preimage[20] = mem.mload(input_addr + 80, time_step);
link if first_step_used ~> preimage[21] = mem.mload(input_addr + 84, time_step);
link if first_step_used ~> preimage[22] = mem.mload(input_addr + 88, time_step);
link if first_step_used ~> preimage[23] = mem.mload(input_addr + 92, time_step);
link if first_step_used ~> preimage[24] = mem.mload(input_addr + 96, time_step);
link if first_step_used ~> preimage[25] = mem.mload(input_addr + 100, time_step);
link if first_step_used ~> preimage[26] = mem.mload(input_addr + 104, time_step);
link if first_step_used ~> preimage[27] = mem.mload(input_addr + 108, time_step);
link if first_step_used ~> preimage[28] = mem.mload(input_addr + 112, time_step);
link if first_step_used ~> preimage[29] = mem.mload(input_addr + 116, time_step);
link if first_step_used ~> preimage[30] = mem.mload(input_addr + 120, time_step);
link if first_step_used ~> preimage[31] = mem.mload(input_addr + 124, time_step);
link if first_step_used ~> preimage[32] = mem.mload(input_addr + 128, time_step);
link if first_step_used ~> preimage[33] = mem.mload(input_addr + 132, time_step);
link if first_step_used ~> preimage[34] = mem.mload(input_addr + 136, time_step);
link if first_step_used ~> preimage[35] = mem.mload(input_addr + 140, time_step);
link if first_step_used ~> preimage[36] = mem.mload(input_addr + 144, time_step);
link if first_step_used ~> preimage[37] = mem.mload(input_addr + 148, time_step);
link if first_step_used ~> preimage[38] = mem.mload(input_addr + 152, time_step);
link if first_step_used ~> preimage[39] = mem.mload(input_addr + 156, time_step);
link if first_step_used ~> preimage[40] = mem.mload(input_addr + 160, time_step);
link if first_step_used ~> preimage[41] = mem.mload(input_addr + 164, time_step);
link if first_step_used ~> preimage[42] = mem.mload(input_addr + 168, time_step);
link if first_step_used ~> preimage[43] = mem.mload(input_addr + 172, time_step);
link if first_step_used ~> preimage[44] = mem.mload(input_addr + 176, time_step);
link if first_step_used ~> preimage[45] = mem.mload(input_addr + 180, time_step);
link if first_step_used ~> preimage[46] = mem.mload(input_addr + 184, time_step);
link if first_step_used ~> preimage[47] = mem.mload(input_addr + 188, time_step);
link if first_step_used ~> preimage[48] = mem.mload(input_addr + 192, time_step);
link if first_step_used ~> preimage[49] = mem.mload(input_addr + 196, time_step);
// Expects input of 25 64-bit numbers decomposed to 25 chunks of 2 32-bit little endian limbs.
// The output is a_prime_prime_prime_0_0_limbs for the first 2 and a_prime_prime for the rest.
// Write memory. This machine produces little endian outputs in memory.
link if final_step_used ~> mem.mstore(output_addr, time_step + 1, a_prime_prime_prime_0_0_limbs[0]);
link if final_step_used ~> mem.mstore(output_addr + 4, time_step + 1, a_prime_prime_prime_0_0_limbs[1]);
link if final_step_used ~> mem.mstore(output_addr + 8, time_step + 1, a_prime_prime[2]);
link if final_step_used ~> mem.mstore(output_addr + 12, time_step + 1, a_prime_prime[3]);
link if final_step_used ~> mem.mstore(output_addr + 16, time_step + 1, a_prime_prime[4]);
link if final_step_used ~> mem.mstore(output_addr + 20, time_step + 1, a_prime_prime[5]);
link if final_step_used ~> mem.mstore(output_addr + 24, time_step + 1, a_prime_prime[6]);
link if final_step_used ~> mem.mstore(output_addr + 28, time_step + 1, a_prime_prime[7]);
link if final_step_used ~> mem.mstore(output_addr + 32, time_step + 1, a_prime_prime[8]);
link if final_step_used ~> mem.mstore(output_addr + 36, time_step + 1, a_prime_prime[9]);
link if final_step_used ~> mem.mstore(output_addr + 40, time_step + 1, a_prime_prime[10]);
link if final_step_used ~> mem.mstore(output_addr + 44, time_step + 1, a_prime_prime[11]);
link if final_step_used ~> mem.mstore(output_addr + 48, time_step + 1, a_prime_prime[12]);
link if final_step_used ~> mem.mstore(output_addr + 52, time_step + 1, a_prime_prime[13]);
link if final_step_used ~> mem.mstore(output_addr + 56, time_step + 1, a_prime_prime[14]);
link if final_step_used ~> mem.mstore(output_addr + 60, time_step + 1, a_prime_prime[15]);
link if final_step_used ~> mem.mstore(output_addr + 64, time_step + 1, a_prime_prime[16]);
link if final_step_used ~> mem.mstore(output_addr + 68, time_step + 1, a_prime_prime[17]);
link if final_step_used ~> mem.mstore(output_addr + 72, time_step + 1, a_prime_prime[18]);
link if final_step_used ~> mem.mstore(output_addr + 76, time_step + 1, a_prime_prime[19]);
link if final_step_used ~> mem.mstore(output_addr + 80, time_step + 1, a_prime_prime[20]);
link if final_step_used ~> mem.mstore(output_addr + 84, time_step + 1, a_prime_prime[21]);
link if final_step_used ~> mem.mstore(output_addr + 88, time_step + 1, a_prime_prime[22]);
link if final_step_used ~> mem.mstore(output_addr + 92, time_step + 1, a_prime_prime[23]);
link if final_step_used ~> mem.mstore(output_addr + 96, time_step + 1, a_prime_prime[24]);
link if final_step_used ~> mem.mstore(output_addr + 100, time_step + 1, a_prime_prime[25]);
link if final_step_used ~> mem.mstore(output_addr + 104, time_step + 1, a_prime_prime[26]);
link if final_step_used ~> mem.mstore(output_addr + 108, time_step + 1, a_prime_prime[27]);
link if final_step_used ~> mem.mstore(output_addr + 112, time_step + 1, a_prime_prime[28]);
link if final_step_used ~> mem.mstore(output_addr + 116, time_step + 1, a_prime_prime[29]);
link if final_step_used ~> mem.mstore(output_addr + 120, time_step + 1, a_prime_prime[30]);
link if final_step_used ~> mem.mstore(output_addr + 124, time_step + 1, a_prime_prime[31]);
link if final_step_used ~> mem.mstore(output_addr + 128, time_step + 1, a_prime_prime[32]);
link if final_step_used ~> mem.mstore(output_addr + 132, time_step + 1, a_prime_prime[33]);
link if final_step_used ~> mem.mstore(output_addr + 136, time_step + 1, a_prime_prime[34]);
link if final_step_used ~> mem.mstore(output_addr + 140, time_step + 1, a_prime_prime[35]);
link if final_step_used ~> mem.mstore(output_addr + 144, time_step + 1, a_prime_prime[36]);
link if final_step_used ~> mem.mstore(output_addr + 148, time_step + 1, a_prime_prime[37]);
link if final_step_used ~> mem.mstore(output_addr + 152, time_step + 1, a_prime_prime[38]);
link if final_step_used ~> mem.mstore(output_addr + 156, time_step + 1, a_prime_prime[39]);
link if final_step_used ~> mem.mstore(output_addr + 160, time_step + 1, a_prime_prime[40]);
link if final_step_used ~> mem.mstore(output_addr + 164, time_step + 1, a_prime_prime[41]);
link if final_step_used ~> mem.mstore(output_addr + 168, time_step + 1, a_prime_prime[42]);
link if final_step_used ~> mem.mstore(output_addr + 172, time_step + 1, a_prime_prime[43]);
link if final_step_used ~> mem.mstore(output_addr + 176, time_step + 1, a_prime_prime[44]);
link if final_step_used ~> mem.mstore(output_addr + 180, time_step + 1, a_prime_prime[45]);
link if final_step_used ~> mem.mstore(output_addr + 184, time_step + 1, a_prime_prime[46]);
link if final_step_used ~> mem.mstore(output_addr + 188, time_step + 1, a_prime_prime[47]);
link if final_step_used ~> mem.mstore(output_addr + 192, time_step + 1, a_prime_prime[48]);
link if final_step_used ~> mem.mstore(output_addr + 196, time_step + 1, a_prime_prime[49]);
// ------------- End memory read / write ---------------
// Adapted from Plonky3 implementation of Keccak: https://github.com/Plonky3/Plonky3/tree/main/keccak-air/src
std::check::require_field_bits(32, || "The field modulus should be at least 2^32 - 1 to work in the keccakf32 machine.");
let NUM_ROUNDS: int = 24;
// pub struct KeccakCols<T> {
// /// The `i`th value is set to 1 if we are in the `i`th round, otherwise 0.
// pub step_flags: [T; NUM_ROUNDS],
// /// A register which indicates if a row should be exported, i.e. included in a multiset equality
// /// argument. Should be 1 only for certain rows which are final steps, i.e. with
// /// `step_flags[23] = 1`.
// pub export: T,
// /// Permutation inputs, stored in y-major order.
// pub preimage: [[[T; U64_LIMBS]; 5]; 5],
// pub a: [[[T; U64_LIMBS]; 5]; 5],
// /// ```ignore
// /// C[x] = xor(A[x, 0], A[x, 1], A[x, 2], A[x, 3], A[x, 4])
// /// ```
// pub c: [[T; 64]; 5],
// /// ```ignore
// /// C'[x, z] = xor(C[x, z], C[x - 1, z], C[x + 1, z - 1])
// /// ```
// pub c_prime: [[T; 64]; 5],
// // Note: D is inlined, not stored in the witness.
// /// ```ignore
// /// A'[x, y] = xor(A[x, y], D[x])
// /// = xor(A[x, y], C[x - 1], ROT(C[x + 1], 1))
// /// ```
// pub a_prime: [[[T; 64]; 5]; 5],
// /// ```ignore
// /// A''[x, y] = xor(B[x, y], andn(B[x + 1, y], B[x + 2, y])).
// /// ```
// pub a_prime_prime: [[[T; U64_LIMBS]; 5]; 5],
// /// The bits of `A''[0, 0]`.
// pub a_prime_prime_0_0_bits: [T; 64],
// /// ```ignore
// /// A'''[0, 0, z] = A''[0, 0, z] ^ RC[k, z]
// /// ```
// pub a_prime_prime_prime_0_0_limbs: [T; U64_LIMBS],
// }
col witness preimage[5 * 5 * 2];
col witness a[5 * 5 * 2];
col witness c[5 * 64];
array::map(c, |i| force_bool(i));
col witness c_prime[5 * 64];
col witness a_prime[5 * 5 * 64];
array::map(a_prime, |i| force_bool(i));
col witness a_prime_prime[5 * 5 * 2];
col witness a_prime_prime_0_0_bits[64];
array::map(a_prime_prime_0_0_bits, |i| force_bool(i));
col witness a_prime_prime_prime_0_0_limbs[2];
// Initially, the first step flag should be 1 while the others should be 0.
// builder.when_first_row().assert_one(local.step_flags[0]);
// for i in 1..NUM_ROUNDS {
// builder.when_first_row().assert_zero(local.step_flags[i]);
// }
// for i in 0..NUM_ROUNDS {
// let current_round_flag = local.step_flags[i];
// let next_round_flag = next.step_flags[(i + 1) % NUM_ROUNDS];
// builder
// .when_transition()
// .assert_eq(next_round_flag, current_round_flag);
// }
let step_flags: col[NUM_ROUNDS] = array::new(NUM_ROUNDS, |i| |row| if row % NUM_ROUNDS == i { 1 } else { 0 } );
// let main = builder.main();
// let (local, next) = (main.row_slice(0), main.row_slice(1));
// let local: &KeccakCols<AB::Var> = (*local).borrow();
// let next: &KeccakCols<AB::Var> = (*next).borrow();
// let first_step = local.step_flags[0];
// let final_step = local.step_flags[NUM_ROUNDS - 1];
// let not_final_step = AB::Expr::one() - final_step;
let first_step: expr = step_flags[0]; // Aliasing instead of defining a new fixed column.
let final_step: expr = step_flags[NUM_ROUNDS - 1];
col fixed is_last = [0]* + [1];
// // If this is the first step, the input A must match the preimage.
// for y in 0..5 {
// for x in 0..5 {
// for limb in 0..U64_LIMBS {
// builder
// .when(first_step)
// .assert_eq(local.preimage[y][x][limb], local.a[y][x][limb]);
// }
// }
// }
array::zip(preimage, a, |p_i, a_i| first_step * (p_i - a_i) = 0);
// // The export flag must be 0 or 1.
// builder.assert_bool(local.export);
// force_bool(export);
// // If this is not the final step, the export flag must be off.
// builder
// .when(not_final_step.clone())
// .assert_zero(local.export);
// not_final_step * export = 0;
// // If this is not the final step, the local and next preimages must match.
// for y in 0..5 {
// for x in 0..5 {
// for limb in 0..U64_LIMBS {
// builder
// .when(not_final_step.clone())
// .when_transition()
// .assert_eq(local.preimage[y][x][limb], next.preimage[y][x][limb]);
// }
// }
// }
array::map(preimage, |p| unchanged_until(p, final_step + is_last));
// for x in 0..5 {
// for z in 0..64 {
// builder.assert_bool(local.c[x][z]);
// let xor = xor3_gen::<AB::Expr>(
// local.c[x][z].into(),
// local.c[(x + 4) % 5][z].into(),
// local.c[(x + 1) % 5][(z + 63) % 64].into(),
// );
// let c_prime = local.c_prime[x][z];
// builder.assert_eq(c_prime, xor);
// }
// }
let andn: expr, expr -> expr = |a, b| (1 - a) * b;
let xor: expr, expr -> expr = |a, b| a + b - 2*a*b;
let xor3: expr, expr, expr -> expr = |a, b, c| xor(xor(a, b), c);
// a b c xor3
// 0 0 0 0
// 0 0 1 1
// 0 1 0 1
// 0 1 1 0
// 1 0 0 1
// 1 0 1 0
// 1 1 0 0
// 1 1 1 1
array::new(320, |i| {
let x = i / 64;
let z = i % 64;
c_prime[i] = xor3(
c[i],
c[((x + 4) % 5) * 64 + z],
c[((x + 1) % 5) * 64 + ((z + 63) % 64)]
)
});
// // Check that the input limbs are consistent with A' and D.
// // A[x, y, z] = xor(A'[x, y, z], D[x, y, z])
// // = xor(A'[x, y, z], C[x - 1, z], C[x + 1, z - 1])
// // = xor(A'[x, y, z], C[x, z], C'[x, z]).
// // The last step is valid based on the identity we checked above.
// // It isn't required, but makes this check a bit cleaner.
// for y in 0..5 {
// for x in 0..5 {
// let get_bit = |z| {
// let a_prime: AB::Var = local.a_prime[y][x][z];
// let c: AB::Var = local.c[x][z];
// let c_prime: AB::Var = local.c_prime[x][z];
// xor3_gen::<AB::Expr>(a_prime.into(), c.into(), c_prime.into())
// };
// for limb in 0..U64_LIMBS {
// let a_limb = local.a[y][x][limb];
// let computed_limb = (limb * BITS_PER_LIMB..(limb + 1) * BITS_PER_LIMB) // bigger address correspond to more significant bit
// .rev()
// .fold(AB::Expr::zero(), |acc, z| {
// builder.assert_bool(local.a_prime[y][x][z]);
// acc.double() + get_bit(z)
// });
// builder.assert_eq(computed_limb, a_limb);
// }
// }
// }
let bits_to_value_be: expr[] -> expr = |bits_be| array::fold(bits_be, 0, |acc, e| (acc * 2 + e));
array::new(50, |i| {
let y = i / 10;
let x = (i / 2) % 5;
let limb = i % 2;
let get_bit: int -> expr = |z| xor3(a_prime[y * 320 + x * 64 + z], c[x * 64 + z], c_prime[x * 64 + z]);
let limb_bits_be: expr[] = array::reverse(array::new(32, |z| get_bit(limb * 32 + z)));
a[i] = bits_to_value_be(limb_bits_be)
});
// // xor_{i=0}^4 A'[x, i, z] = C'[x, z], so for each x, z,
// // diff * (diff - 2) * (diff - 4) = 0, where
// // diff = sum_{i=0}^4 A'[x, i, z] - C'[x, z]
// for x in 0..5 {
// for z in 0..64 {
// let sum: AB::Expr = (0..5).map(|y| local.a_prime[y][x][z].into()).sum();
// let diff = sum - local.c_prime[x][z];
// let four = AB::Expr::from_canonical_u8(4);
// builder
// .assert_zero(diff.clone() * (diff.clone() - AB::Expr::two()) * (diff - four));
// }
// }
array::new(320, |i| {
let x = i / 64;
let z = i % 64;
let sum = utils::sum(5, |y| a_prime[y * 320 + i]);
let diff = sum - c_prime[i];
diff * (diff - 2) * (diff - 4) = 0
});
// // A''[x, y] = xor(B[x, y], andn(B[x + 1, y], B[x + 2, y])).
// for y in 0..5 {
// for x in 0..5 {
// let get_bit = |z| {
// let andn = andn_gen::<AB::Expr>(
// local.b((x + 1) % 5, y, z).into(),
// local.b((x + 2) % 5, y, z).into(),
// );
// xor_gen::<AB::Expr>(local.b(x, y, z).into(), andn)
// };
// for limb in 0..U64_LIMBS {
// let computed_limb = (limb * BITS_PER_LIMB..(limb + 1) * BITS_PER_LIMB)
// .rev()
// .fold(AB::Expr::zero(), |acc, z| acc.double() + get_bit(z));
// builder.assert_eq(computed_limb, local.a_prime_prime[y][x][limb]);
// }
// }
// }
array::new(50, |i| {
let y = i / 10;
let x = (i / 2) % 5;
let limb = i % 2;
let get_bit: int -> expr = |z| {
xor(b(x, y, z), andn(b((x + 1) % 5, y, z), b((x + 2) % 5, y, z)))
};
let limb_bits_be: expr[] = array::reverse(array::new(32, |z| get_bit(limb * 32 + z)));
a_prime_prime[i] = bits_to_value_be(limb_bits_be)
});
// pub fn b(&self, x: usize, y: usize, z: usize) -> T {
// debug_assert!(x < 5);
// debug_assert!(y < 5);
// debug_assert!(z < 64);
// // B is just a rotation of A', so these are aliases for A' registers.
// // From the spec,
// // B[y, (2x + 3y) % 5] = ROT(A'[x, y], r[x, y])
// // So,
// // B[x, y] = f((x + 3y) % 5, x)
// // where f(a, b) = ROT(A'[a, b], r[a, b])
// let a = (x + 3 * y) % 5;
// let b = x;
// let rot = R[a][b] as usize;
// self.a_prime[b][a][(z + 64 - rot) % 64]
// }
let b: int, int, int -> expr = |x, y, z| {
let a: int = (x + 3 * y) % 5;
let rot: int = R[a * 5 + x]; // b = x
a_prime[x * 320 + a * 64 + (z + 64 - rot) % 64]
};
// // A'''[0, 0] = A''[0, 0] XOR RC
// for limb in 0..U64_LIMBS {
// let computed_a_prime_prime_0_0_limb = (limb * BITS_PER_LIMB
// ..(limb + 1) * BITS_PER_LIMB)
// .rev()
// .fold(AB::Expr::zero(), |acc, z| {
// builder.assert_bool(local.a_prime_prime_0_0_bits[z]);
// acc.double() + local.a_prime_prime_0_0_bits[z]
// });
// let a_prime_prime_0_0_limb = local.a_prime_prime[0][0][limb];
// builder.assert_eq(computed_a_prime_prime_0_0_limb, a_prime_prime_0_0_limb);
// }
array::new(2, |limb| {
let limb_bits_be: expr[] = array::reverse(array::new(32, |z| a_prime_prime_0_0_bits[limb * 32 + z]));
a_prime_prime[limb] = bits_to_value_be(limb_bits_be)
});
// let get_xored_bit = |i| {
// let mut rc_bit_i = AB::Expr::zero();
// for r in 0..NUM_ROUNDS {
// let this_round = local.step_flags[r];
// let this_round_constant = AB::Expr::from_canonical_u8(rc_value_bit(r, i));
// rc_bit_i += this_round * this_round_constant;
// }
// xor_gen::<AB::Expr>(local.a_prime_prime_0_0_bits[i].into(), rc_bit_i)
// };
let get_xored_bit: int -> expr = |i| xor(a_prime_prime_0_0_bits[i], utils::sum(NUM_ROUNDS, |r| expr(RC_BITS[r * 64 + i]) * step_flags[r] ));
// for limb in 0..U64_LIMBS {
// let a_prime_prime_prime_0_0_limb = local.a_prime_prime_prime_0_0_limbs[limb];
// let computed_a_prime_prime_prime_0_0_limb = (limb * BITS_PER_LIMB
// ..(limb + 1) * BITS_PER_LIMB)
// .rev()
// .fold(AB::Expr::zero(), |acc, z| acc.double() + get_xored_bit(z));
// builder.assert_eq(
// computed_a_prime_prime_prime_0_0_limb,
// a_prime_prime_prime_0_0_limb,
// );
// }
array::new(2, |limb| {
let limb_bits_be: expr[] = array::reverse(array::new(32, |z| get_xored_bit(limb * 32 + z)));
a_prime_prime_prime_0_0_limbs[limb] = bits_to_value_be(limb_bits_be)
});
// // Enforce that this round's output equals the next round's input.
// for x in 0..5 {
// for y in 0..5 {
// for limb in 0..U64_LIMBS {
// let output = local.a_prime_prime_prime(y, x, limb);
// let input = next.a[y][x][limb];
// builder
// .when_transition()
// .when(not_final_step.clone())
// .assert_eq(output, input);
// }
// }
// }
// final_step and is_last should never be 1 at the same time, because final_step is 1 at multiples of 24 and can never be 1 at power of 2.
// (1 - final_step - is_last) is used to deactivate constraints that reference the next row, whenever we are at the latch row or the last row of the trace (so that we don't incorrectly cycle to the first row).
array::new(50, |i| {
let y = i / 10;
let x = (i / 2) % 5;
let limb = i % 2;
(1 - final_step - is_last) * (a_prime_prime_prime(y, x, limb) - a[i]') = 0
});
// pub fn a_prime_prime_prime(&self, y: usize, x: usize, limb: usize) -> T {
// debug_assert!(y < 5);
// debug_assert!(x < 5);
// debug_assert!(limb < U64_LIMBS);
// if y == 0 && x == 0 {
// self.a_prime_prime_prime_0_0_limbs[limb]
// } else {
// self.a_prime_prime[y][x][limb]
// }
// }
let a_prime_prime_prime: int, int, int -> expr = |y, x, limb| if y == 0 && x == 0 { a_prime_prime_prime_0_0_limbs[limb] } else { a_prime_prime[y * 10 + x * 2 + limb] };
let R: int[] = [
0, 36, 3, 41, 18,
1, 44, 10, 45, 2,
62, 6, 43, 15, 61,
28, 55, 25, 21, 56,
27, 20, 39, 8, 14
];
let RC: int[] = [
0x0000000000000001,
0x0000000000008082,
0x800000000000808A,
0x8000000080008000,
0x000000000000808B,
0x0000000080000001,
0x8000000080008081,
0x8000000000008009,
0x000000000000008A,
0x0000000000000088,
0x0000000080008009,
0x000000008000000A,
0x000000008000808B,
0x800000000000008B,
0x8000000000008089,
0x8000000000008003,
0x8000000000008002,
0x8000000000000080,
0x000000000000800A,
0x800000008000000A,
0x8000000080008081,
0x8000000000008080,
0x0000000080000001,
0x8000000080008008
];
let RC_BITS: int[] = array::new(24 * 64, |i| {
let rc_idx = i / 64;
let bit = i % 64;
RC[rc_idx] >> bit & 0x1
});
// Prover function section (for witness generation).
// Hints are only needed for c and a_prime, the solver is able to figure out the
// rest of the witness.
// // Populate C[x] = xor(A[x, 0], A[x, 1], A[x, 2], A[x, 3], A[x, 4]).
// for x in 0..5 {
// for z in 0..64 {
// let limb = z / BITS_PER_LIMB;
// let bit_in_limb = z % BITS_PER_LIMB;
// let a = (0..5).map(|y| {
// let a_limb = row.a[y][x][limb].as_canonical_u64() as u16;
// ((a_limb >> bit_in_limb) & 1) != 0
// });
// row.c[x][z] = F::from_bool(a.fold(false, |acc, x| acc ^ x));
// }
// }
query |row| compute_from_multi(
c, row, a,
|a_fe| array::new(array::len(c), |i| {
let x = i / 64;
let z = i % 64;
let limb = z / 32;
let bit_in_limb = z % 32;
fe(utils::fold(
5,
|y| (int(a_fe[y * 10 + x * 2 + limb]) >> bit_in_limb) & 0x1,
0,
|acc, e| acc ^ e
))
}));
// // Populate A'. To avoid shifting indices, we rewrite
// // A'[x, y, z] = xor(A[x, y, z], C[x - 1, z], C[x + 1, z - 1])
// // as
// // A'[x, y, z] = xor(A[x, y, z], C[x, z], C'[x, z]).
// for x in 0..5 {
// for y in 0..5 {
// for z in 0..64 {
// let limb = z / BITS_PER_LIMB;
// let bit_in_limb = z % BITS_PER_LIMB;
// let a_limb = row.a[y][x][limb].as_canonical_u64() as u16;
// let a_bit = F::from_bool(((a_limb >> bit_in_limb) & 1) != 0);
// row.a_prime[y][x][z] = xor([a_bit, row.c[x][z], row.c_prime[x][z]]);
// }
// }
// }
query |row| compute_from_multi(
a_prime, row, a + c + c_prime,
|inputs| array::new(array::len(a_prime), |i| {
let y = i / 320;
let x = (i / 64) % 5;
let z = i % 64;
let limb = z / 32;
let bit_in_limb = z % 32;
let a_elem = inputs[y * 10 + x * 2 + limb];
let c_elem = inputs[x * 64 + z + 5 * 5 * 2];
let c_prime_elem = inputs[x * 64 + z + 5 * 5 * 2 + 5 * 64];
fe(((int(a_elem) >> bit_in_limb) & 0x1) ^ int(c_elem) ^ int(c_prime_elem))
}));
// TODO: This hint is correct but not needed (the solver can figure this out).
// We keep it here because it prevents the JIT solver from succeeding (because of the
// use of `provide_value`), because it currently fails when compiling Rust code.
// Once these issues are resolved, we can remove this hint.
query |row| {
std::prover::provide_value(
a_prime_prime_0_0_bits[0],
row,
fe((int(eval(a_prime_prime[0]))) & 0x1)
);
};
}