Skip to content

NaNs Are Returned by non NaN Downsamplers #73

Open
@mike-iqmo

Description

@mike-iqmo

When using the non NaN version of the samplers, I am getting NaNs in the downsampled data.

My understanding from the documentation was that MinMaxLTTBDownsampler would omit all NaN values.

Some code demonstrating this below

n=10_000
y = np.arange(n, dtype=np.float64)
for i in range(1,100):
    y[i+100] = np.nan

sampled=MinMaxLTTBDownsampler().downsample(y,n_out=1000)
print(f"MinMaxLTTBDownsampler:{[i for i in sampled if np.isnan(y[i])]}")

sampled_nan=NaNMinMaxLTTBDownsampler().downsample(y,n_out=1000)
print(f"NaNMinMaxLTTBDownsampler:{[i for i in sampled_nan if np.isnan(y[i])]}")

That will print

MinMaxLTTBDownsampler:[101, 111, 121, 131, 141, 151, 161, 171, 181, 191]
NaNMinMaxLTTBDownsampler:[101, 111, 121, 131, 141, 151, 161, 171, 181, 191]

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions