Open
Description
When using the non NaN version of the samplers, I am getting NaNs in the downsampled data.
My understanding from the documentation was that MinMaxLTTBDownsampler would omit all NaN values.
Some code demonstrating this below
n=10_000
y = np.arange(n, dtype=np.float64)
for i in range(1,100):
y[i+100] = np.nan
sampled=MinMaxLTTBDownsampler().downsample(y,n_out=1000)
print(f"MinMaxLTTBDownsampler:{[i for i in sampled if np.isnan(y[i])]}")
sampled_nan=NaNMinMaxLTTBDownsampler().downsample(y,n_out=1000)
print(f"NaNMinMaxLTTBDownsampler:{[i for i in sampled_nan if np.isnan(y[i])]}")
That will print
MinMaxLTTBDownsampler:[101, 111, 121, 131, 141, 151, 161, 171, 181, 191]
NaNMinMaxLTTBDownsampler:[101, 111, 121, 131, 141, 151, 161, 171, 181, 191]
Metadata
Metadata
Assignees
Labels
No labels