-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path42.facedetect.py
38 lines (24 loc) · 1.32 KB
/
42.facedetect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
#Haar-cascade Detection in OpenCV
#OpenCV comes with a trainer as well as detector. If you want to train your own classifier for any object like car, planes
#etc. you can use OpenCV to create one. Its full details are given here: Cascade Classifier Training.
#Here we will deal with detection. OpenCV already contains many pre-trained classifiers for face, eyes, smile etc.
#Those XML files are stored in opencv/data/haarcascades/ folder. Let’s create face and eye detector with OpenCV.
import numpy as np
import cv2
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
eye_cascade = cv2.CascadeClassifier('haarcascade_eye.xml')
img = cv2.imread('sachin.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#Now we find the faces in the image. If faces are found, it returns the positions of detected faces as Rect(x,y,w,h). Once
#we get these locations, we can create a ROI for the face and apply eye detection on this ROI
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
for (x,y,w,h) in faces:
img = cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)
roi_gray = gray[y:y+h, x:x+w]
roi_color = img[y:y+h, x:x+w]
eyes = eye_cascade.detectMultiScale(roi_gray)
for (ex,ey,ew,eh) in eyes:
cv2.rectangle(roi_color,(ex,ey),(ex+ew,ey+eh),(0,255,0),2)
cv2.imshow('img',img)
cv2.waitKey(0)
cv2.destroyAllWindows()