|
3 | 3 | Getting started with ``skore`` |
4 | 4 | ============================== |
5 | 5 |
|
6 | | -*This example is work in progress!* |
| 6 | +This example builds on top of the :ref:`getting_started` guide. |
7 | 7 |
|
8 | 8 | This guide provides a quick start to ``skore``, an open-source package that aims to enable data scientists to: |
9 | 9 |
|
|
36 | 36 | Now that the project file exists, we can load it in our notebook so that we can |
37 | 37 | read from and write to it: |
38 | 38 |
|
39 | | -.. code-block:: python |
40 | | -
|
41 | | - from skore import load |
42 | | -
|
43 | | - project = load("project.skore") |
44 | | -
|
45 | | -Storing some items |
46 | | ------------------- |
47 | | -
|
48 | | -This will automatically open a browser at the UI's location: |
49 | | -
|
50 | | -**CONTINUE WORKING HERE** |
51 | | -
|
52 | | -#. On the top left, create a new ``View``. |
53 | | -#. From the ``Elements`` section on the bottom left, you can add stored items to this view, either by double-cliking on them or by doing drag-and-drop. |
54 | | -
|
55 | | -.. image:: https://raw.githubusercontent.com/sylvaincom/sylvaincom.github.io/master/files/probabl/skore/2024_10_14_skore_demo.gif |
56 | | - :alt: Getting started with ``skore`` demo |
57 | 39 | """ |
| 40 | + |
| 41 | +# %% |
| 42 | +# .. code-block:: python |
| 43 | +# |
| 44 | +# from skore import load |
| 45 | +# |
| 46 | +# project = load("project.skore") |
| 47 | + |
| 48 | +# %% |
| 49 | +# Storing some items |
| 50 | +# ------------------ |
| 51 | +# |
| 52 | +# Storing an integer: |
| 53 | +# |
| 54 | +# .. code-block:: python |
| 55 | +# |
| 56 | +# project.put("my_int", 3) |
| 57 | +# |
| 58 | +# Here, the name of my stored item is ``my_int`` and the integer value is 3. |
| 59 | + |
| 60 | +# %% |
| 61 | +# For a ``pandas`` data frame: |
| 62 | + |
| 63 | +# %% |
| 64 | +import numpy as np |
| 65 | +import pandas as pd |
| 66 | + |
| 67 | +my_df = pd.DataFrame(np.random.randn(3, 3)) |
| 68 | +my_df.head() |
| 69 | + |
| 70 | +# %% |
| 71 | +# .. code-block:: python |
| 72 | +# |
| 73 | +# project.put("my_df", my_df) |
| 74 | + |
| 75 | +# %% |
| 76 | +# For a ``matplotlib`` figure: |
| 77 | + |
| 78 | +# %% |
| 79 | +import matplotlib.pyplot as plt |
| 80 | + |
| 81 | +x = [0, 1, 2, 3, 4, 5] |
| 82 | +fig, ax = plt.subplots(figsize=(5, 3), layout="constrained") |
| 83 | +_ = ax.plot(x) |
| 84 | + |
| 85 | +# %% |
| 86 | +# .. code-block:: python |
| 87 | +# |
| 88 | +# project.put("my_figure", fig) |
| 89 | + |
| 90 | +# %% |
| 91 | +# For a ``scikit-learn`` fitted pipeline: |
| 92 | + |
| 93 | +# %% |
| 94 | +from sklearn.datasets import load_diabetes |
| 95 | +from sklearn.linear_model import Lasso |
| 96 | +from sklearn.pipeline import Pipeline |
| 97 | +from sklearn.preprocessing import StandardScaler |
| 98 | + |
| 99 | +diabetes = load_diabetes() |
| 100 | +X = diabetes.data[:150] |
| 101 | +y = diabetes.target[:150] |
| 102 | +my_pipeline = Pipeline( |
| 103 | + [("standard_scaler", StandardScaler()), ("lasso", Lasso(alpha=2))] |
| 104 | +) |
| 105 | +my_pipeline.fit(X, y) |
| 106 | + |
| 107 | +# %% |
| 108 | +# .. code-block:: python |
| 109 | +# |
| 110 | +# project.put("my_fitted_pipeline", my_pipeline) |
| 111 | +# |
| 112 | +# Back to the dashboard |
| 113 | +# --------------------- |
| 114 | +# |
| 115 | +# #. On the top left, create a new ``View``. |
| 116 | +# #. From the ``Elements`` section on the bottom left, you can add stored items to this view, either by double-cliking on them or by doing drag-and-drop. |
| 117 | +# |
| 118 | +# .. image:: https://raw.githubusercontent.com/sylvaincom/sylvaincom.github.io/master/files/probabl/skore/2024_10_14_skore_demo.gif |
| 119 | +# :alt: Getting started with ``skore`` demo |
| 120 | +# |
0 commit comments