1-
2- API
3- ===
4-
51State Space Model (Base class)
62===============================
73
84.. autoclass :: dynamax.ssm.SSM
95 :members:
106
7+ Parameters
8+ ----------
9+
10+ Parameters and their associated properties are stored as :class: `jax.DeviceArray `
11+ and :class: `dynamax.parameters.ParameterProperties `, respectively. They are bundled together into a
12+ :class: `dynamax.parameters.ParameterSet ` and a :class: `dynamax.parameters.PropertySet `, which are simply
13+ aliases for immutable datastructures (in our case, :class: `NamedTuple `).
14+
15+ .. autoclass :: dynamax.parameters.ParameterSet
16+ .. autoclass :: dynamax.parameters.PropertySet
17+ .. autoclass :: dynamax.parameters.ParameterProperties
18+
1119Hidden Markov Model
1220===================
1321
14- High-level class
15- ----------------
22+ Abstract classes
23+ ------------------
1624
1725.. autoclass :: dynamax.hidden_markov_model.HMM
26+ :show-inheritance:
1827 :members:
1928
29+ .. autoclass :: dynamax.hidden_markov_model.HMMInitialState
30+ :members:
31+
32+ .. autoclass :: dynamax.hidden_markov_model.HMMTransitions
33+ :members:
34+
35+ .. autoclass :: dynamax.hidden_markov_model.HMMEmissions
36+ :members:
37+
38+ High-level models
39+ -----------------
40+
41+ The HMM implementations below cover common emission distributions and,
42+ if the emissions are exponential family distributions, the models implement
43+ closed form EM updates. For HMMs with emissions outside the non-exponential family,
44+ these models default to a generic M-step implemented in :class: `HMMEmissions `.
45+
46+ Unless otherwise specified, these models have standard initial distributions and
47+ transition distributions with conjugate, Bayesian priors on their parameters.
48+
49+ **Initial distribution: **
50+
51+ $$p(z_1 \m id \p i_1) = \m athrm{Cat}(z_1 \m id \p i_1)$$
52+ $$p(\p i_1) = \m athrm{Dir}(\p i_1 \m id \a lpha 1_K)$$
53+
54+ where $\a lpha$ is the prior concentration on the initial distribution $\p i_1$.
55+
56+ **Transition distribution: **
57+
58+ $$p(z_t \m id z_{t-1}, \t heta) = \m athrm{Cat}(z_t \m id A_{z_{t-1}})$$
59+ $$p(A) = \p rod_{k=1}^K \m athrm{Dir}(A_k \m id \b eta 1_K)$$
60+
61+ where $\b eta$ is the prior concentration on the rows of the transition matrix $A$.
62+
63+
64+ .. autoclass :: dynamax.hidden_markov_model.BernoulliHMM
65+ :show-inheritance:
66+ :members: initialize
67+
68+ .. autoclass :: dynamax.hidden_markov_model.CategoricalHMM
69+ :show-inheritance:
70+ :members: initialize
71+
72+ .. autoclass :: dynamax.hidden_markov_model.GaussianHMM
73+ :show-inheritance:
74+ :members: initialize
75+
76+ .. autoclass :: dynamax.hidden_markov_model.DiagonalGaussianHMM
77+ :show-inheritance:
78+ :members: initialize
79+
80+ .. autoclass :: dynamax.hidden_markov_model.SphericalGaussianHMM
81+ :show-inheritance:
82+ :members: initialize
83+
84+ .. autoclass :: dynamax.hidden_markov_model.SharedCovarianceGaussianHMM
85+ :show-inheritance:
86+ :members: initialize
87+
88+ .. autoclass :: dynamax.hidden_markov_model.LowRankGaussianHMM
89+ :show-inheritance:
90+ :members: initialize
91+
92+ .. autoclass :: dynamax.hidden_markov_model.MultinomialHMM
93+ :show-inheritance:
94+ :members: initialize
95+
96+ .. autoclass :: dynamax.hidden_markov_model.PoissonHMM
97+ :show-inheritance:
98+ :members: initialize
99+
100+ .. autoclass :: dynamax.hidden_markov_model.GaussianMixtureHMM
101+ :show-inheritance:
102+ :members: initialize
103+
104+ .. autoclass :: dynamax.hidden_markov_model.DiagonalGaussianMixtureHMM
105+ :show-inheritance:
106+ :members: initialize
107+
108+ .. autoclass :: dynamax.hidden_markov_model.LinearRegressionHMM
109+ :show-inheritance:
110+ :members: initialize
111+
112+ .. autoclass :: dynamax.hidden_markov_model.LogisticRegressionHMM
113+ :show-inheritance:
114+ :members: initialize
115+
116+ .. autoclass :: dynamax.hidden_markov_model.CategoricalRegressionHMM
117+ :show-inheritance:
118+ :members: initialize
119+
120+ .. autoclass :: dynamax.hidden_markov_model.LinearAutoregressiveHMM
121+ :show-inheritance:
122+ :members: initialize, sample, compute_inputs
123+
20124Low-level inference
21125-------------------
22126
127+ .. autoclass :: dynamax.hidden_markov_model.HMMPosterior
128+ .. autoclass :: dynamax.hidden_markov_model.HMMPosteriorFiltered
129+
23130.. autofunction :: dynamax.hidden_markov_model.hmm_filter
24131.. autofunction :: dynamax.hidden_markov_model.hmm_smoother
25132.. autofunction :: dynamax.hidden_markov_model.hmm_two_filter_smoother
26133.. autofunction :: dynamax.hidden_markov_model.hmm_fixed_lag_smoother
27134.. autofunction :: dynamax.hidden_markov_model.hmm_posterior_mode
28135.. autofunction :: dynamax.hidden_markov_model.hmm_posterior_sample
136+ .. autofunction :: dynamax.hidden_markov_model.parallel_hmm_filter
137+ .. autofunction :: dynamax.hidden_markov_model.parallel_hmm_smoother
138+
139+ Types
140+ -----
141+
142+ .. autoclass :: dynamax.hidden_markov_model.HMMParameterSet
143+ .. autoclass :: dynamax.hidden_markov_model.HMMPropertySet
144+
29145
30146Linear Gaussian SSM
31147====================
50166.. autoclass :: dynamax.linear_gaussian_ssm.ParamsLGSSMInitial
51167.. autoclass :: dynamax.linear_gaussian_ssm.ParamsLGSSMDynamics
52168.. autoclass :: dynamax.linear_gaussian_ssm.ParamsLGSSMEmissions
53- .. autoclass :: dynamax.linear_gaussian_ssm.PosteriorLGSSMFiltered
54- .. autoclass :: dynamax.linear_gaussian_ssm.PosteriorLGSSMSmoothed
169+
170+ .. autoclass :: dynamax.linear_gaussian_ssm.PosteriorGSSMFiltered
171+ .. autoclass :: dynamax.linear_gaussian_ssm.PosteriorGSSMSmoothed
55172
56173Nonlinear Gaussian GSSM
57174========================
@@ -74,6 +191,12 @@ Low-level inference
74191.. autofunction :: dynamax.nonlinear_gaussian_ssm.unscented_kalman_filter
75192.. autofunction :: dynamax.nonlinear_gaussian_ssm.unscented_kalman_smoother
76193
194+ Types
195+ -----
196+
197+ .. autoclass :: dynamax.nonlinear_gaussian_ssm.ParamsNLGSSM
198+
199+
77200Generalized Gaussian GSSM
78201==========================
79202
@@ -89,4 +212,9 @@ Low-level inference
89212.. autofunction :: dynamax.generalized_gaussian_ssm.conditional_moments_gaussian_filter
90213.. autofunction :: dynamax.generalized_gaussian_ssm.iterated_conditional_moments_gaussian_filter
91214.. autofunction :: dynamax.generalized_gaussian_ssm.conditional_moments_gaussian_smoother
92- .. autofunction :: dynamax.generalized_gaussian_ssm.iterated_conditional_moments_gaussian_smoother
215+ .. autofunction :: dynamax.generalized_gaussian_ssm.iterated_conditional_moments_gaussian_smoother
216+
217+ Types
218+ -----
219+
220+ .. autoclass :: dynamax.generalized_gaussian_ssm.ParamsGGSSM
0 commit comments