Skip to content

Commit 907c6c8

Browse files
committed
Restore the docs to their full potential
1 parent df3af83 commit 907c6c8

File tree

6 files changed

+6
-6
lines changed

6 files changed

+6
-6
lines changed

docs/make.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
# THis is because we are on a headless system
22
# see https://github.com/jheinen/GR.jl/issues/510
3-
ENV["GKS_WSTYPE"]="nul"
3+
# ENV["GKS_WSTYPE"]="nul"
44

55

66
using Documenter

examples/geometric_modeling.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -134,7 +134,7 @@ prob = Optimization.OptimizationProblem(f, randn(rng, ndim), nothing, lb=fill(-5
134134

135135
# Now we solve for our optimial image.
136136

137-
sol = solve(prob, BBO_adaptive_de_rand_1_bin_radiuslimited(); maxiters=50_000)
137+
sol = solve(prob, BBO_adaptive_de_rand_1_bin_radiuslimited(); maxiters=50_000);
138138

139139
# The sol vector is in the transformed space, so first we need to transform back to parameter space
140140
# to that we can interpret the solution.

examples/hybrid_imaging.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -161,7 +161,7 @@ using OptimizationBBO
161161
using Zygote
162162
f = OptimizationFunction(tpost, Optimization.AutoZygote())
163163
prob = Optimization.OptimizationProblem(f, prior_sample(rng, tpost), nothing, lb=fill(-5.0, ndim), ub=fill(5.0,ndim))
164-
sol = solve(prob, BBO_adaptive_de_rand_1_bin_radiuslimited(); maxiters=100_000)
164+
sol = solve(prob, BBO_adaptive_de_rand_1_bin_radiuslimited(); maxiters=100_000);
165165

166166
# Alright now we can zoom to the peak!
167167
using OptimizationOptimJL

examples/imaging_closures.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -107,7 +107,7 @@ using ComradeOptimization
107107
using OptimizationBBO
108108
f = OptimizationFunction(tpost, Optimization.AutoForwardDiff())
109109
prob = Optimization.OptimizationProblem(f, prior_sample(tpost), nothing, lb=fill(-5.0, ndim), ub=fill(5.0,ndim))
110-
sol = solve(prob, BBO_adaptive_de_rand_1_bin_radiuslimited(); maxiters=100_000)
110+
sol = solve(prob, BBO_adaptive_de_rand_1_bin_radiuslimited(); maxiters=100_000);
111111

112112

113113
# Before we analyze our solution we first need to transform back to parameter space.

examples/imaging_pol.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -306,7 +306,7 @@ using Zygote
306306
f = OptimizationFunction(tpost, Optimization.AutoZygote())
307307
= logdensityof(tpost)
308308
prob = Optimization.OptimizationProblem(f, prior_sample(rng, tpost), nothing)
309-
sol = solve(prob, LBFGS(), maxiters=15_000, callback=((x,p)->(@info ℓ(x);false)), g_tol=1e-1)
309+
sol = solve(prob, LBFGS(), maxiters=15_000, callback=((x,p)->(@info ℓ(x);false)), g_tol=1e-1);
310310

311311
# !!! warning
312312
# Fitting polarized images is generally much harder than Stokes I imaging. This difficulty means that

examples/imaging_vis.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -203,7 +203,7 @@ using OptimizationOptimJL
203203
f = OptimizationFunction(tpost, Optimization.AutoZygote())
204204
prob = Optimization.OptimizationProblem(f, 2*rand(rng, ndim) .- 1.0, nothing)
205205
= logdensityof(tpost)
206-
sol = solve(prob, LBFGS(), maxiters=5_000, g_tol=1e-1, callback=((x,p)->(@info f(x,p); false)))
206+
sol = solve(prob, LBFGS(), maxiters=5_000, g_tol=1e-1, callback=((x,p)->(@info f(x,p); false)));
207207

208208
# Now transform back to parameter space
209209
xopt = transform(tpost, sol.u)

0 commit comments

Comments
 (0)