Summary: Generates a random 3-tensor represented as a 3-dimensional array, computes the associated graph and displays the result after applying a set of filters (see section 2.)
In particular, given the finite dimensional vector spaces
The computed set of vertices
Option | Description | Default |
---|---|---|
-n N | Dimension n for the first vector space | 4 |
-m M | Dimension m for the second vector space | 4 |
-k K | Dimension k for the third vector space | 4 |
-q Q | Prime field size | 5 |
-c C | Highlights all cycles of length c in the final graph | None |
--loose | Highlights all cycles of length 2 < c' <= c | false |
--deg_lbound D | Filters out all nodes of degree less or equal than specified | 0 |
--deg_ubound D | Filters out all nodes of degree greater or equal than specified | 1000 |
--isolated_nodes | Displays nodes of degree zero on the final graph | false |
--labeled | Show graph with vertex labels | false |
--verbose | Show extra info on terminal | false |
--isometry | Applies a random isometry to the original tensor and displays it | false |
--no_visualization | Prevents the display of a new tab with the resulting tensor graph | False |
--minimal | Only prints in terminal the random tensor, and, if enabled, all cycles of various lengths | false |
--load_tensor | Loads tensor from file instead of generating a random one [TODO] | "" |
--load_graph | Loads tensor graph from file instead of calculating one given a random tensor [TODO] | "" |
sage main.py -n=5 -m=5 -k=5 -q=7 --deg_lbound=1 --deg_ubound=10 --verbose
Given
If
This implementation is only suited for small values