Skip to content

Commit a29db68

Browse files
committed
Merge branch 'refs/heads/develop' into 25.1
2 parents 611c3c1 + c811b60 commit a29db68

21 files changed

+79
-53
lines changed

CHANGELOG.md

Lines changed: 3 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -23,7 +23,6 @@
2323
## Optimisations
2424

2525
- [#638](https://github.com/pybop-team/PyBOP/pull/638) - Allows the problem class to accept any domain name.
26-
- [#593](https://github.com/pybop-team/PyBOP/pull/593) - Enables `ParameterSet` to systematically return a `pybamm.ParameterValues` object within the model class.
2726
- [#618](https://github.com/pybop-team/PyBOP/pull/618) - Adds Mean Absolute Error (MAE) and Mean Squared Error (MSE) costs.
2827
- [#601](https://github.com/pybop-team/PyBOP/pull/601) - Deprecates `MultiOptimisationResult` by merging with `OptimisationResult`.
2928
- [#600](https://github.com/pybop-team/PyBOP/pull/600) - Removes repetitious functionality within the cost classes.
@@ -34,6 +33,9 @@
3433

3534
## Breaking Changes
3635

36+
- [#656](https://github.com/pybop-team/PyBOP/pull/656) - Completes `ParameterSet` changes from #593 and aligns the simulation options in `model.predict` with the model properties such as the solver.
37+
- [#593](https://github.com/pybop-team/PyBOP/pull/593) - Enables `ParameterSet` to systematically return a `pybamm.ParameterValues` object within the model class.
38+
3739
# [v24.12](https://github.com/pybop-team/PyBOP/tree/v24.12) - 2024-12-21
3840

3941
## Features

benchmarks/benchmark_model.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -23,7 +23,7 @@ def setup(self, model, parameter_set):
2323
set_random_seed()
2424

2525
# Create model instance
26-
self.model = model(parameter_set=pybop.ParameterSet.pybamm(parameter_set))
26+
self.model = model(parameter_set=pybop.ParameterSet(parameter_set))
2727

2828
# Define fitting parameters
2929
parameters = pybop.Parameters(

benchmarks/benchmark_optim_construction.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -25,7 +25,7 @@ def setup(self, model, parameter_set, optimiser):
2525
set_random_seed()
2626

2727
# Create model instance
28-
model_instance = model(parameter_set=pybop.ParameterSet.pybamm(parameter_set))
28+
model_instance = model(parameter_set=pybop.ParameterSet(parameter_set))
2929

3030
# Define fitting parameters
3131
parameters = pybop.Parameters(

benchmarks/benchmark_parameterisation.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -35,7 +35,7 @@ def setup(self, model, parameter_set, optimiser):
3535
set_random_seed()
3636

3737
# Create model instance
38-
params = pybop.ParameterSet.pybamm(parameter_set)
38+
params = pybop.ParameterSet(parameter_set)
3939
params.update(
4040
{
4141
"Negative electrode active material volume fraction": 0.63,

benchmarks/benchmark_track_parameterisation.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -35,7 +35,7 @@ def setup(self, model, parameter_set, optimiser):
3535
set_random_seed()
3636

3737
# Create model instance
38-
params = pybop.ParameterSet.pybamm(parameter_set)
38+
params = pybop.ParameterSet(parameter_set)
3939
params.update(
4040
{
4141
"Negative electrode active material volume fraction": 0.63,

examples/scripts/comparison_examples/gradient_descent.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -4,9 +4,8 @@
44
import pybop
55

66
# Define model and use high-performant solver for sensitivities
7-
solver = pybamm.IDAKLUSolver()
87
parameter_set = pybop.ParameterSet("Chen2020")
9-
model = pybop.lithium_ion.SPM(parameter_set=parameter_set, solver=solver)
8+
model = pybop.lithium_ion.SPM(parameter_set=parameter_set)
109

1110
# Fitting parameters
1211
parameters = pybop.Parameters(
@@ -36,6 +35,7 @@
3635
)
3736

3837
# Generate problem, cost function, and optimisation class
38+
model.solver = pybamm.IDAKLUSolver()
3939
problem = pybop.FittingProblem(model, parameters, dataset)
4040
cost = pybop.RootMeanSquaredError(problem)
4141
optim = pybop.GradientDescent(

examples/scripts/comparison_examples/grouped_SPMe.py

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -41,6 +41,7 @@
4141
parameter_set=parameter_set,
4242
options=model_options,
4343
)
44+
time_domain_SPMe.solver = time_domain_SPMe.pybamm_model.default_solver
4445
simulation = time_domain_SPMe.predict(
4546
initial_state=initial_state, experiment=experiment
4647
)

examples/scripts/comparison_examples/scipy_minimize.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -5,8 +5,7 @@
55

66
# Define model
77
parameter_set = pybop.ParameterSet("Chen2020")
8-
solver = pybamm.IDAKLUSolver()
9-
model = pybop.lithium_ion.SPM(parameter_set=parameter_set, solver=solver)
8+
model = pybop.lithium_ion.SPM(parameter_set=parameter_set)
109

1110
# Fitting parameters
1211
parameters = pybop.Parameters(
@@ -36,6 +35,7 @@
3635
)
3736

3837
# Generate problem, cost function, and optimisation class
38+
model.solver = pybamm.IDAKLUSolver()
3939
problem = pybop.FittingProblem(model, parameters, dataset)
4040
cost = pybop.SumSquaredError(problem)
4141
optim = pybop.SciPyMinimize(

examples/scripts/comparison_examples/simulated_annealing.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -4,9 +4,8 @@
44
import pybop
55

66
# Define model and use high-performant solver for sensitivities
7-
solver = pybamm.IDAKLUSolver()
87
parameter_set = pybop.ParameterSet.pybamm("Chen2020")
9-
model = pybop.lithium_ion.SPM(parameter_set=parameter_set, solver=solver)
8+
model = pybop.lithium_ion.SPM(parameter_set=parameter_set)
109

1110
# Fitting parameters
1211
parameters = pybop.Parameters(
@@ -38,6 +37,7 @@
3837
)
3938

4039
# Generate problem, cost function, and optimisation class
40+
model.solver = pybamm.IDAKLUSolver()
4141
problem = pybop.FittingProblem(model, parameters, dataset)
4242
cost = pybop.RootMeanSquaredError(problem)
4343
optim = pybop.SimulatedAnnealing(

examples/scripts/getting_started/multi_start_optimisation.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -4,9 +4,8 @@
44
import pybop
55

66
# Define model and use the high-performant IDAKLU solver for sensitivities
7-
solver = pybamm.IDAKLUSolver(atol=1e-5, rtol=1e-5)
87
parameter_set = pybop.ParameterSet("Chen2020")
9-
model = pybop.lithium_ion.SPM(parameter_set=parameter_set, solver=solver)
8+
model = pybop.lithium_ion.SPM(parameter_set=parameter_set)
109

1110
# Fitting parameters
1211
parameters = pybop.Parameters(
@@ -36,6 +35,7 @@
3635
)
3736

3837
# Generate problem, cost function classes
38+
model.solver = pybamm.IDAKLUSolver(atol=1e-5, rtol=1e-5)
3939
problem = pybop.FittingProblem(model, parameters, dataset)
4040
cost = pybop.RootMeanSquaredError(problem)
4141

0 commit comments

Comments
 (0)