-
-
Notifications
You must be signed in to change notification settings - Fork 132
/
Copy path_sparse_array.py
1007 lines (817 loc) · 30.1 KB
/
_sparse_array.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import contextlib
import operator
import warnings
from abc import ABCMeta, abstractmethod
from collections.abc import Callable, Iterable
from functools import reduce
from numbers import Integral
import numpy as np
from ._umath import elemwise
from ._utils import _zero_of_dtype, equivalent, html_table, normalize_axis
_reduce_super_ufunc = {np.add: np.multiply, np.multiply: np.power}
class SparseArray:
"""
An abstract base class for all the sparse array classes.
Attributes
----------
dtype : numpy.dtype
The data type of this array.
fill_value : scalar
The fill value of this array.
"""
__metaclass__ = ABCMeta
def __init__(self, shape, fill_value=None):
if not isinstance(shape, Iterable):
shape = (shape,)
if not all(isinstance(sh, Integral) and int(sh) >= 0 for sh in shape):
raise ValueError("shape must be an non-negative integer or a tuple of non-negative integers.")
self.shape = tuple(int(sh) for sh in shape)
if fill_value is not None:
if not hasattr(fill_value, "dtype") or fill_value.dtype != self.dtype:
self.fill_value = self.dtype.type(fill_value)
else:
self.fill_value = fill_value
else:
self.fill_value = _zero_of_dtype(self.dtype)
dtype = None
@property
def device(self):
data = getattr(self, "data", None)
return getattr(data, "device", "cpu")
def to_device(self, device, /, *, stream=None):
if device != "cpu":
raise ValueError("Only `device='cpu'` is supported.")
return self
@property
@abstractmethod
def nnz(self):
"""
The number of nonzero elements in this array. Note that any duplicates in
:code:`coords` are counted multiple times. To avoid this, call :obj:`COO.sum_duplicates`.
Returns
-------
int
The number of nonzero elements in this array.
See Also
--------
DOK.nnz : Equivalent :obj:`DOK` array property.
numpy.count_nonzero : A similar Numpy function.
scipy.sparse.coo_matrix.nnz : The Scipy equivalent property.
Examples
--------
>>> import numpy as np
>>> from sparse import COO
>>> x = np.array([0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 0])
>>> np.count_nonzero(x)
6
>>> s = COO.from_numpy(x)
>>> s.nnz
6
>>> np.count_nonzero(x) == s.nnz
True
"""
@property
def ndim(self):
"""
The number of dimensions of this array.
Returns
-------
int
The number of dimensions of this array.
See Also
--------
DOK.ndim : Equivalent property for :obj:`DOK` arrays.
numpy.ndarray.ndim : Numpy equivalent property.
Examples
--------
>>> from sparse import COO
>>> import numpy as np
>>> x = np.random.rand(1, 2, 3, 1, 2)
>>> s = COO.from_numpy(x)
>>> s.ndim
5
>>> s.ndim == x.ndim
True
"""
return len(self.shape)
@property
def size(self):
"""
The number of all elements (including zeros) in this array.
Returns
-------
int
The number of elements.
See Also
--------
numpy.ndarray.size : Numpy equivalent property.
Examples
--------
>>> from sparse import COO
>>> import numpy as np
>>> x = np.zeros((10, 10))
>>> s = COO.from_numpy(x)
>>> s.size
100
"""
# We use this instead of np.prod because np.prod
# returns a float64 for an empty shape.
return reduce(operator.mul, self.shape, 1)
@property
def density(self):
"""
The ratio of nonzero to all elements in this array.
Returns
-------
float
The ratio of nonzero to all elements.
See Also
--------
COO.size : Number of elements.
COO.nnz : Number of nonzero elements.
Examples
--------
>>> import numpy as np
>>> from sparse import COO
>>> x = np.zeros((8, 8))
>>> x[0, :] = 1
>>> s = COO.from_numpy(x)
>>> s.density
0.125
"""
return self.nnz / self.size
def _repr_html_(self):
"""
Diagnostic report about this array.
Renders in Jupyter.
"""
try:
from matrepr import to_html
from matrepr.adapters.sparse_driver import PyDataSparseDriver
return to_html(PyDataSparseDriver.adapt(self), notebook=True)
except (ImportError, ValueError):
return html_table(self)
def _str_impl(self, summary):
"""
A human-readable representation of this array, including a metadata summary
and a tabular view of the array values.
Values view only included if `matrepr` is available.
Parameters
----------
summary
A type-specific summary of this array, used as the first line of return value.
Returns
-------
str
A human-readable representation of this array.
"""
try:
from matrepr import to_str
from matrepr.adapters.sparse_driver import PyDataSparseDriver
values = to_str(
PyDataSparseDriver.adapt(self),
title=False, # disable matrepr description
width_str=0, # autodetect terminal width
max_cols=9999,
)
return f"{summary}\n{values}"
except (ImportError, ValueError):
return summary
@abstractmethod
def asformat(self, format):
"""
Convert this sparse array to a given format.
Parameters
----------
format : str
A format string.
Returns
-------
out : SparseArray
The converted array.
Raises
------
NotImplementedError
If the format isn't supported.
"""
@abstractmethod
def todense(self):
"""
Convert this :obj:`SparseArray` array to a dense :obj:`numpy.ndarray`. Note that
this may take a large amount of memory and time.
Returns
-------
numpy.ndarray
The converted dense array.
See Also
--------
DOK.todense : Equivalent :obj:`DOK` array method.
COO.todense : Equivalent :obj:`COO` array method.
scipy.sparse.coo_matrix.todense : Equivalent Scipy method.
Examples
--------
>>> import sparse
>>> x = np.random.randint(100, size=(7, 3))
>>> s = sparse.COO.from_numpy(x)
>>> x2 = s.todense()
>>> np.array_equal(x, x2)
True
"""
def _make_shallow_copy_of(self, other):
self.__dict__ = other.__dict__.copy()
def __array__(self, *args, **kwargs):
from ._settings import AUTO_DENSIFY
if not AUTO_DENSIFY:
raise RuntimeError(
"Cannot convert a sparse array to dense automatically. To manually densify, use the todense method."
)
return np.asarray(self.todense(), *args, **kwargs)
def __array_function__(self, func, types, args, kwargs):
import sparse as module
sparse_func = None
try:
submodules = getattr(func, "__module__", "numpy").split(".")[1:]
for submodule in submodules:
module = getattr(module, submodule)
sparse_func = getattr(module, func.__name__)
except AttributeError:
pass
else:
return sparse_func(*args, **kwargs)
with contextlib.suppress(AttributeError):
sparse_func = getattr(type(self), func.__name__)
if not isinstance(sparse_func, Callable) and len(args) == 1 and len(kwargs) == 0:
try:
return getattr(self, func.__name__)
except AttributeError:
pass
if sparse_func is None:
return NotImplemented
return sparse_func(*args, **kwargs)
@staticmethod
def _reduce(method, *args, **kwargs):
from ._common import _is_scipy_sparse_obj
assert len(args) == 1
self = args[0]
if _is_scipy_sparse_obj(self):
self = type(self).from_scipy_sparse(self)
return self.reduce(method, **kwargs)
def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
out = kwargs.pop("out", None)
if out is not None and not all(isinstance(x, type(self)) for x in out):
return NotImplemented
if getattr(ufunc, "signature", None) is not None:
return self.__array_function__(ufunc, (np.ndarray, type(self)), inputs, kwargs)
if out is not None:
test_args = [np.empty((1,), dtype=a.dtype) if hasattr(a, "dtype") else a for a in inputs]
test_kwargs = kwargs.copy()
if method == "reduce":
test_kwargs["axis"] = None
test_out = tuple(np.empty((1,), dtype=a.dtype) for a in out)
if len(test_out) == 1:
test_out = test_out[0]
getattr(ufunc, method)(*test_args, out=test_out, **test_kwargs)
kwargs["dtype"] = out[0].dtype
if method == "outer":
method = "__call__"
cum_ndim = 0
inputs_transformed = []
for inp in reversed(inputs):
inputs_transformed.append(inp[(Ellipsis,) + (None,) * cum_ndim])
cum_ndim += inp.ndim
inputs = tuple(reversed(inputs_transformed))
if method == "__call__":
result = elemwise(ufunc, *inputs, **kwargs)
elif method == "reduce":
result = SparseArray._reduce(ufunc, *inputs, **kwargs)
else:
return NotImplemented
if out is not None:
(out,) = out
if out.shape != result.shape:
raise ValueError(
f"non-broadcastable output operand with shape {out.shape} "
f"doesn't match the broadcast shape {result.shape}"
)
out._make_shallow_copy_of(result)
return out
return result
def reduce(self, method, axis=(0,), keepdims=False, **kwargs):
"""
Performs a reduction operation on this array.
Parameters
----------
method : numpy.ufunc
The method to use for performing the reduction.
axis : Union[int, Iterable[int]], optional
The axes along which to perform the reduction. Uses all axes by default.
keepdims : bool, optional
Whether or not to keep the dimensions of the original array.
**kwargs : dict
Any extra arguments to pass to the reduction operation.
See Also
--------
numpy.ufunc.reduce : A similar Numpy method.
COO.reduce : This method implemented on COO arrays.
GCXS.reduce : This method implemented on GCXS arrays.
"""
axis = normalize_axis(axis, self.ndim)
zero_reduce_result = method.reduce([self.fill_value, self.fill_value], **kwargs)
reduce_super_ufunc = _reduce_super_ufunc.get(method)
if not equivalent(zero_reduce_result, self.fill_value) and reduce_super_ufunc is None:
raise ValueError(f"Performing this reduction operation would produce a dense result: {method!s}")
if not isinstance(axis, tuple):
axis = (axis,)
out = self._reduce_calc(method, axis, keepdims, **kwargs)
if len(out) == 1:
return out[0]
data, counts, axis, n_cols, arr_attrs = out
result_fill_value = self.fill_value
if reduce_super_ufunc is None:
missing_counts = counts != n_cols
data[missing_counts] = method(data[missing_counts], self.fill_value, **kwargs)
else:
data = method(
data,
reduce_super_ufunc(self.fill_value, n_cols - counts),
).astype(data.dtype)
result_fill_value = reduce_super_ufunc(self.fill_value, n_cols)
out = self._reduce_return(data, arr_attrs, result_fill_value)
if keepdims:
shape = list(self.shape)
for ax in axis:
shape[ax] = 1
out = out.reshape(shape)
if out.ndim == 0:
return out[()]
return out
def _reduce_calc(self, method, axis, keepdims, **kwargs):
raise NotImplementedError
def _reduce_return(self, data, arr_attrs, result_fill_value):
raise NotImplementedError
def sum(self, axis=None, keepdims=False, dtype=None, out=None):
"""
Performs a sum operation along the given axes. Uses all axes by default.
Parameters
----------
axis : Union[int, Iterable[int]], optional
The axes along which to sum. Uses all axes by default.
keepdims : bool, optional
Whether or not to keep the dimensions of the original array.
dtype : numpy.dtype
The data type of the output array.
Returns
-------
SparseArray
The reduced output sparse array.
See Also
--------
:obj:`numpy.sum` : Equivalent numpy function.
scipy.sparse.coo_matrix.sum : Equivalent Scipy function.
"""
return np.add.reduce(self, out=out, axis=axis, keepdims=keepdims, dtype=dtype)
def max(self, axis=None, keepdims=False, out=None):
"""
Maximize along the given axes. Uses all axes by default.
Parameters
----------
axis : Union[int, Iterable[int]], optional
The axes along which to maximize. Uses all axes by default.
keepdims : bool, optional
Whether or not to keep the dimensions of the original array.
out : numpy.dtype
The data type of the output array.
Returns
-------
SparseArray
The reduced output sparse array.
See Also
--------
:obj:`numpy.max` : Equivalent numpy function.
scipy.sparse.coo_matrix.max : Equivalent Scipy function.
"""
return np.maximum.reduce(self, out=out, axis=axis, keepdims=keepdims)
amax = max
def any(self, axis=None, keepdims=False, out=None):
"""
See if any values along array are ``True``. Uses all axes by default.
Parameters
----------
axis : Union[int, Iterable[int]], optional
The axes along which to minimize. Uses all axes by default.
keepdims : bool, optional
Whether or not to keep the dimensions of the original array.
Returns
-------
SparseArray
The reduced output sparse array.
See Also
--------
:obj:`numpy.any` : Equivalent numpy function.
"""
return np.logical_or.reduce(self, out=out, axis=axis, keepdims=keepdims)
def all(self, axis=None, keepdims=False, out=None):
"""
See if all values in an array are ``True``. Uses all axes by default.
Parameters
----------
axis : Union[int, Iterable[int]], optional
The axes along which to minimize. Uses all axes by default.
keepdims : bool, optional
Whether or not to keep the dimensions of the original array.
Returns
-------
SparseArray
The reduced output sparse array.
See Also
--------
:obj:`numpy.all` : Equivalent numpy function.
"""
return np.logical_and.reduce(self, out=out, axis=axis, keepdims=keepdims)
def min(self, axis=None, keepdims=False, out=None):
"""
Minimize along the given axes. Uses all axes by default.
Parameters
----------
axis : Union[int, Iterable[int]], optional
The axes along which to minimize. Uses all axes by default.
keepdims : bool, optional
Whether or not to keep the dimensions of the original array.
out : numpy.dtype
The data type of the output array.
Returns
-------
SparseArray
The reduced output sparse array.
See Also
--------
:obj:`numpy.min` : Equivalent numpy function.
scipy.sparse.coo_matrix.min : Equivalent Scipy function.
"""
return np.minimum.reduce(self, out=out, axis=axis, keepdims=keepdims)
amin = min
def prod(self, axis=None, keepdims=False, dtype=None, out=None):
"""
Performs a product operation along the given axes. Uses all axes by default.
Parameters
----------
axis : Union[int, Iterable[int]], optional
The axes along which to multiply. Uses all axes by default.
keepdims : bool, optional
Whether or not to keep the dimensions of the original array.
dtype : numpy.dtype
The data type of the output array.
Returns
-------
SparseArray
The reduced output sparse array.
See Also
--------
:obj:`numpy.prod` : Equivalent numpy function.
"""
return np.multiply.reduce(self, out=out, axis=axis, keepdims=keepdims, dtype=dtype)
def round(self, decimals=0, out=None):
"""
Evenly round to the given number of decimals.
See Also
--------
:obj:`numpy.round` :
NumPy equivalent ufunc.
:obj:`COO.elemwise` :
Apply an arbitrary element-wise function to one or two
arguments.
"""
if out is not None and not isinstance(out, tuple):
out = (out,)
return self.__array_ufunc__(np.round, "__call__", self, decimals=decimals, out=out)
round_ = round
def clip(self, min=None, max=None, out=None):
"""
Clip (limit) the values in the array.
Return an array whose values are limited to ``[min, max]``. One of min
or max must be given.
See Also
--------
sparse.clip : For full documentation and more details.
numpy.clip : Equivalent NumPy function.
"""
if out is not None and not isinstance(out, tuple):
out = (out,)
if min is None and max is None:
if out is not None:
return self.__array_ufunc__(np.identity, "__call__", self, out=out)
return self
return self.__array_ufunc__(np.clip, "__call__", self, a_min=min, a_max=max, out=out)
def astype(self, dtype, casting="unsafe", copy=True):
"""
Copy of the array, cast to a specified type.
See Also
--------
scipy.sparse.coo_matrix.astype :
SciPy sparse equivalent function
numpy.ndarray.astype :
NumPy equivalent ufunc.
:obj:`COO.elemwise` :
Apply an arbitrary element-wise function to one or two
arguments.
"""
# this matches numpy's behavior
if self.dtype == dtype and not copy:
return self
return self.__array_ufunc__(np.ndarray.astype, "__call__", self, dtype=dtype, copy=copy, casting=casting)
def mean(self, axis=None, keepdims=False, dtype=None, out=None):
"""
Compute the mean along the given axes. Uses all axes by default.
Parameters
----------
axis : Union[int, Iterable[int]], optional
The axes along which to compute the mean. Uses all axes by default.
keepdims : bool, optional
Whether or not to keep the dimensions of the original array.
dtype : numpy.dtype
The data type of the output array.
Returns
-------
SparseArray
The reduced output sparse array.
See Also
--------
numpy.ndarray.mean : Equivalent numpy method.
scipy.sparse.coo_matrix.mean : Equivalent Scipy method.
Notes
-----
* This function internally calls :obj:`COO.sum_duplicates` to bring the
array into canonical form.
* The :code:`out` parameter is provided just for compatibility with
Numpy and isn't actually supported.
Examples
--------
You can use :obj:`COO.mean` to compute the mean of an array across any
dimension.
>>> from sparse import COO
>>> x = np.array([[1, 2, 0, 0], [0, 1, 0, 0]], dtype="i8")
>>> s = COO.from_numpy(x)
>>> s2 = s.mean(axis=1)
>>> s2.todense() # doctest: +SKIP
array([0.5, 1.5, 0., 0.])
You can also use the :code:`keepdims` argument to keep the dimensions
after the mean.
>>> s3 = s.mean(axis=0, keepdims=True)
>>> s3.shape
(1, 4)
You can pass in an output datatype, if needed.
>>> s4 = s.mean(axis=0, dtype=np.float16)
>>> s4.dtype
dtype('float16')
By default, this reduces the array down to one number, computing the
mean along all axes.
>>> s.mean()
0.5
"""
if axis is None:
axis = tuple(range(self.ndim))
elif not isinstance(axis, tuple):
axis = (axis,)
den = reduce(operator.mul, (self.shape[i] for i in axis), 1)
if dtype is None:
if issubclass(self.dtype.type, np.integer | np.bool_):
dtype = inter_dtype = np.dtype("f8")
else:
dtype = self.dtype
inter_dtype = np.dtype("f4") if issubclass(dtype.type, np.float16) else dtype
else:
inter_dtype = dtype
num = self.sum(axis=axis, keepdims=keepdims, dtype=inter_dtype)
if num.ndim:
out = np.true_divide(num, den, casting="unsafe")
return out.astype(dtype) if out.dtype != dtype else out
return np.divide(num, den, dtype=dtype, out=out)
def var(self, axis=None, dtype=None, out=None, ddof=0, keepdims=False):
"""
Compute the variance along the given axes. Uses all axes by default.
Parameters
----------
axis : Union[int, Iterable[int]], optional
The axes along which to compute the variance. Uses all axes by default.
dtype : numpy.dtype, optional
The output datatype.
out : SparseArray, optional
The array to write the output to.
ddof : int
The degrees of freedom.
keepdims : bool, optional
Whether or not to keep the dimensions of the original array.
Returns
-------
SparseArray
The reduced output sparse array.
See Also
--------
numpy.ndarray.var : Equivalent numpy method.
Notes
-----
* This function internally calls :obj:`COO.sum_duplicates` to bring the
array into canonical form.
Examples
--------
You can use :obj:`COO.var` to compute the variance of an array across any
dimension.
>>> from sparse import COO
>>> x = np.array([[1, 2, 0, 0], [0, 1, 0, 0]], dtype="i8")
>>> s = COO.from_numpy(x)
>>> s2 = s.var(axis=1)
>>> s2.todense() # doctest: +SKIP
array([0.6875, 0.1875])
You can also use the :code:`keepdims` argument to keep the dimensions
after the variance.
>>> s3 = s.var(axis=0, keepdims=True)
>>> s3.shape
(1, 4)
You can pass in an output datatype, if needed.
>>> s4 = s.var(axis=0, dtype=np.float16)
>>> s4.dtype
dtype('float16')
By default, this reduces the array down to one number, computing the
variance along all axes.
>>> s.var()
0.5
"""
axis = normalize_axis(axis, self.ndim)
if axis is None:
axis = tuple(range(self.ndim))
if not isinstance(axis, tuple):
axis = (axis,)
rcount = reduce(operator.mul, (self.shape[a] for a in axis), 1)
# Make this warning show up on top.
if ddof >= rcount:
warnings.warn("Degrees of freedom <= 0 for slice", RuntimeWarning, stacklevel=1)
# Cast bool, unsigned int, and int to float64 by default
if dtype is None and issubclass(self.dtype.type, np.integer | np.bool_):
dtype = np.dtype("f8")
arrmean = self.sum(axis, dtype=dtype, keepdims=True)[...]
np.divide(arrmean, rcount, out=arrmean)
x = self - arrmean
if issubclass(self.dtype.type, np.complexfloating):
x = x.real * x.real + x.imag * x.imag
else:
x = np.multiply(x, x, out=x)
ret = x.sum(axis=axis, dtype=dtype, out=out, keepdims=keepdims)
# Compute degrees of freedom and make sure it is not negative.
rcount = max([rcount - ddof, 0])
ret = ret[...]
np.divide(ret, rcount, out=ret, casting="unsafe")
return ret[()]
def std(self, axis=None, dtype=None, out=None, ddof=0, keepdims=False):
"""
Compute the standard deviation along the given axes. Uses all axes by default.
Parameters
----------
axis : Union[int, Iterable[int]], optional
The axes along which to compute the standard deviation. Uses
all axes by default.
dtype : numpy.dtype, optional
The output datatype.
out : SparseArray, optional
The array to write the output to.
ddof : int
The degrees of freedom.
keepdims : bool, optional
Whether or not to keep the dimensions of the original array.
Returns
-------
SparseArray
The reduced output sparse array.
See Also
--------
numpy.ndarray.std : Equivalent numpy method.
Notes
-----
* This function internally calls :obj:`COO.sum_duplicates` to bring the
array into canonical form.
Examples
--------
You can use :obj:`COO.std` to compute the standard deviation of an array
across any dimension.
>>> from sparse import COO
>>> x = np.array([[1, 2, 0, 0], [0, 1, 0, 0]], dtype="i8")
>>> s = COO.from_numpy(x)
>>> s2 = s.std(axis=1)
>>> s2.todense() # doctest: +SKIP
array([0.8291562, 0.4330127])
You can also use the :code:`keepdims` argument to keep the dimensions
after the standard deviation.
>>> s3 = s.std(axis=0, keepdims=True)
>>> s3.shape
(1, 4)
You can pass in an output datatype, if needed.
>>> s4 = s.std(axis=0, dtype=np.float16)
>>> s4.dtype
dtype('float16')
By default, this reduces the array down to one number, computing the
standard deviation along all axes.
>>> s.std() # doctest: +SKIP
0.7071067811865476
"""
ret = self.var(axis=axis, dtype=dtype, out=out, ddof=ddof, keepdims=keepdims)
return np.sqrt(ret)
@property
def real(self):
"""The real part of the array.
Examples
--------
>>> from sparse import COO
>>> x = COO.from_numpy([1 + 0j, 0 + 1j])
>>> x.real.todense() # doctest: +SKIP
array([1., 0.])
>>> x.real.dtype
dtype('float64')
Returns
-------
out : SparseArray
The real component of the array elements. If the array dtype is
real, the dtype of the array is used for the output. If the array
is complex, the output dtype is float.
See Also
--------
numpy.ndarray.real : NumPy equivalent attribute.
numpy.real : NumPy equivalent function.
"""
return self.__array_ufunc__(np.real, "__call__", self)
@property
def imag(self):
"""The imaginary part of the array.
Examples
--------
>>> from sparse import COO
>>> x = COO.from_numpy([1 + 0j, 0 + 1j])
>>> x.imag.todense() # doctest: +SKIP
array([0., 1.])
>>> x.imag.dtype
dtype('float64')
Returns
-------
out : SparseArray
The imaginary component of the array elements. If the array dtype
is real, the dtype of the array is used for the output. If the
array is complex, the output dtype is float.
See Also
--------
numpy.ndarray.imag : NumPy equivalent attribute.
numpy.imag : NumPy equivalent function.
"""
return self.__array_ufunc__(np.imag, "__call__", self)
def conj(self):
"""Return the complex conjugate, element-wise.
The complex conjugate of a complex number is obtained by changing the
sign of its imaginary part.
Examples
--------
>>> from sparse import COO
>>> x = COO.from_numpy([1 + 2j, 2 - 1j])
>>> res = x.conj()
>>> res.todense() # doctest: +SKIP
array([1.-2.j, 2.+1.j])
>>> res.dtype
dtype('complex128')
Returns
-------
out : SparseArray
The complex conjugate, with same dtype as the input.
See Also
--------
numpy.ndarray.conj : NumPy equivalent method.
numpy.conj : NumPy equivalent function.
"""
return np.conj(self)
def __array_namespace__(self, *, api_version=None):
if api_version is None:
api_version = "2022.12"
if api_version not in {"2021.12", "2022.12"}:
raise ValueError(f'"{api_version}" Array API version not supported.')
import sparse
return sparse
def __bool__(self):
""" """
return self._to_scalar(bool)
def __float__(self):
""" """
return self._to_scalar(float)
def __int__(self):
""" """
return self._to_scalar(int)
def __index__(self):
""" """
return self._to_scalar(int)
def __complex__(self):
""" """
return self._to_scalar(complex)
def _to_scalar(self, builtin):
if self.size != 1 or self.shape != ():
raise ValueError(f"{builtin} can be computed for one-element arrays only.")
return builtin(self.todense().flatten()[0])