-
-
Notifications
You must be signed in to change notification settings - Fork 132
/
Copy pathcompressed.py
937 lines (791 loc) · 29.2 KB
/
compressed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
import copy as _copy
import numpy as np
import operator
from numpy.lib.mixins import NDArrayOperatorsMixin
from functools import reduce
from collections.abc import Iterable
import scipy.sparse as ss
from scipy.sparse import compressed
from typing import Tuple
from .._sparse_array import SparseArray, _reduce_super_ufunc
from .._coo.common import linear_loc
from .._common import dot, matmul
from .._utils import (
normalize_axis,
can_store,
check_zero_fill_value,
check_compressed_axes,
_zero_of_dtype,
equivalent,
)
from .._coo.core import COO
from .convert import uncompress_dimension, _transpose, _1d_reshape
from .indexing import getitem
def _from_coo(x, compressed_axes=None, idx_dtype=None):
if x.ndim == 0:
if compressed_axes is not None:
raise ValueError("no axes to compress for 0d array")
return ((x.data, x.coords, []), x.shape, None, x.fill_value)
if x.ndim == 1:
if compressed_axes is not None:
raise ValueError("no axes to compress for 1d array")
return ((x.data, x.coords[0], ()), x.shape, None, x.fill_value)
compressed_axes = normalize_axis(compressed_axes, x.ndim)
if compressed_axes is None:
# defaults to best compression ratio
compressed_axes = (np.argmin(x.shape),)
check_compressed_axes(x.shape, compressed_axes)
axis_order = list(compressed_axes)
# array location where the uncompressed dimensions start
axisptr = len(compressed_axes)
axis_order.extend(np.setdiff1d(np.arange(len(x.shape)), compressed_axes))
reordered_shape = tuple(x.shape[i] for i in axis_order)
row_size = np.prod(reordered_shape[:axisptr])
col_size = np.prod(reordered_shape[axisptr:])
compressed_shape = (row_size, col_size)
shape = x.shape
if idx_dtype and not can_store(idx_dtype, max(max(compressed_shape), x.nnz)):
raise ValueError(
"cannot store array with the compressed shape {} and nnz {} with dtype {}.".format(
compressed_shape,
x.nnz,
idx_dtype,
)
)
if not idx_dtype:
idx_dtype = x.coords.dtype
if not can_store(idx_dtype, max(max(compressed_shape), x.nnz)):
idx_dtype = np.min_scalar_type(max(max(compressed_shape), x.nnz))
# transpose axes, linearize, reshape, and compress
linear = linear_loc(x.coords[axis_order], reordered_shape)
order = np.argsort(linear)
linear = linear[order]
coords = np.empty((2, x.nnz), dtype=idx_dtype)
strides = 1
for i, d in enumerate(compressed_shape[::-1]):
coords[-(i + 1), :] = (linear // strides) % d
strides *= d
indptr = np.empty(row_size + 1, dtype=idx_dtype)
indptr[0] = 0
np.cumsum(np.bincount(coords[0], minlength=row_size), out=indptr[1:])
indices = coords[1]
data = x.data[order]
return ((data, indices, indptr), shape, compressed_axes, x.fill_value)
class GCXS(SparseArray, NDArrayOperatorsMixin):
"""
A sparse multidimensional array.
This is stored in GCXS format, a generalization of the GCRS/GCCS formats
from 'Efficient storage scheme for n-dimensional sparse array: GCRS/GCCS':
https://ieeexplore.ieee.org/document/7237032. GCXS generalizes the CRS/CCS
sparse matrix formats.
For arrays with ndim == 2, GCXS is the same CSR/CSC.
For arrays with ndim >2, any combination of axes can be compressed,
significantly reducing storage.
GCXS consists of 3 arrays. Let the 3 arrays be RO, CO and VL. The first element
of array RO is the integer 0 and later elements are the number of
cumulative non-zero elements in each row for GCRS, column for
GCCS. CO stores column indexes of non-zero elements at each row for GCRS, column for GCCS.
VL stores the values of the non-zero array elements.
The superiority of the GCRS/GCCS over traditional (CRS/CCS) is shown by both
theoretical analysis and experimental results, outlined in the linked research paper.
Parameters
----------
arg : tuple (data, indices, indptr)
A tuple of arrays holding the data, indices, and
index pointers for the nonzero values of the array.
shape : tuple[int] (COO.ndim,)
The shape of the array.
compressed_axes : Iterable[int]
The axes to compress.
prune : bool, optional
A flag indicating whether or not we should prune any fill-values present in
the data array.
fill_value: scalar, optional
The fill value for this array.
Attributes
----------
data : numpy.ndarray (nnz,)
An array holding the nonzero values corresponding to :obj:`GCXS.indices`.
indices : numpy.ndarray (nnz,)
An array holding the coordinates of every nonzero element along uncompressed dimensions.
indptr : numpy.ndarray
An array holding the cumulative sums of the nonzeros along the compressed dimensions.
shape : tuple[int] (ndim,)
The dimensions of this array.
See Also
--------
DOK : A mostly write-only sparse array.
"""
__array_priority__ = 12
def __init__(
self,
arg,
shape=None,
compressed_axes=None,
prune=False,
fill_value=None,
idx_dtype=None,
):
if isinstance(arg, ss.spmatrix):
arg = self.from_scipy_sparse(arg)
if isinstance(arg, np.ndarray):
(arg, shape, compressed_axes, fill_value) = _from_coo(
COO(arg), compressed_axes
)
elif isinstance(arg, COO):
(arg, shape, compressed_axes, fill_value) = _from_coo(
arg, compressed_axes, idx_dtype
)
elif isinstance(arg, GCXS):
if compressed_axes is not None and arg.compressed_axes != compressed_axes:
arg = arg.change_compressed_axes(compressed_axes)
(arg, shape, compressed_axes, fill_value) = (
(arg.data, arg.indices, arg.indptr),
arg.shape,
arg.compressed_axes,
arg.fill_value,
)
self.data, self.indices, self.indptr = arg
if fill_value is None:
fill_value = _zero_of_dtype(self.data.dtype)
if shape is None:
raise ValueError("missing `shape` argument")
check_compressed_axes(len(shape), compressed_axes)
if len(shape) == 1:
compressed_axes = None
if self.data.ndim != 1:
raise ValueError("data must be a scalar or 1-dimensional.")
self.shape = shape
self._compressed_axes = (
tuple(compressed_axes) if isinstance(compressed_axes, Iterable) else None
)
self.fill_value = fill_value
if prune:
self._prune()
def copy(self, deep=True):
"""Return a copy of the array.
Parameters
----------
deep : boolean, optional
If True (default), the internal coords and data arrays are also
copied. Set to ``False`` to only make a shallow copy.
"""
return _copy.deepcopy(self) if deep else _copy.copy(self)
@classmethod
def from_numpy(cls, x, compressed_axes=None, fill_value=0, idx_dtype=None):
coo = COO(x, fill_value=fill_value, idx_dtype=idx_dtype)
return cls.from_coo(coo, compressed_axes, idx_dtype)
@classmethod
def from_coo(cls, x, compressed_axes=None, idx_dtype=None):
(arg, shape, compressed_axes, fill_value) = _from_coo(
x, compressed_axes, idx_dtype
)
return cls(
arg, shape=shape, compressed_axes=compressed_axes, fill_value=fill_value
)
@classmethod
def from_scipy_sparse(cls, x):
if x.format == "csc":
return cls(
(x.data, x.indices, x.indptr), shape=x.shape, compressed_axes=(1,)
)
else:
x = x.asformat("csr")
return cls(
(x.data, x.indices, x.indptr), shape=x.shape, compressed_axes=(0,)
)
@classmethod
def from_iter(
cls, x, shape=None, compressed_axes=None, fill_value=None, idx_dtype=None
):
return cls.from_coo(
COO.from_iter(x, shape, fill_value),
compressed_axes,
idx_dtype,
)
@property
def dtype(self):
"""
The datatype of this array.
Returns
-------
numpy.dtype
The datatype of this array.
See Also
--------
numpy.ndarray.dtype : Numpy equivalent property.
scipy.sparse.csr_matrix.dtype : Scipy equivalent property.
"""
return self.data.dtype
@property
def nnz(self):
"""
The number of nonzero elements in this array.
Returns
-------
int
The number of nonzero elements in this array.
See Also
--------
COO.nnz : Equivalent :obj:`COO` array property.
DOK.nnz : Equivalent :obj:`DOK` array property.
numpy.count_nonzero : A similar Numpy function.
scipy.sparse.csr_matrix.nnz : The Scipy equivalent property.
"""
return self.data.shape[0]
@property
def format(self):
"""
The storage format of this array.
Returns
-------
str
The storage format of this array.
See Also
-------
scipy.sparse.dok_matrix.format : The Scipy equivalent property.
Examples
-------
>>> import sparse
>>> s = sparse.random((5,5), density=0.2, format='dok')
>>> s.format
'dok'
>>> t = sparse.random((5,5), density=0.2, format='coo')
>>> t.format
'coo'
"""
return "gcxs"
@property
def nbytes(self):
"""
The number of bytes taken up by this object. Note that for small arrays,
this may undercount the number of bytes due to the large constant overhead.
Returns
-------
int
The approximate bytes of memory taken by this object.
See Also
--------
numpy.ndarray.nbytes : The equivalent Numpy property.
"""
nbytes = self.data.nbytes + self.indices.nbytes + self.indptr.nbytes
return nbytes
@property
def _axis_order(self):
axis_order = list(self.compressed_axes)
axis_order.extend(
np.setdiff1d(np.arange(len(self.shape)), self.compressed_axes)
)
return axis_order
@property
def _axisptr(self):
# array location where the uncompressed dimensions start
return len(self.compressed_axes)
@property
def _compressed_shape(self):
row_size = np.prod(self._reordered_shape[: self._axisptr])
col_size = np.prod(self._reordered_shape[self._axisptr :])
return (row_size, col_size)
@property
def _reordered_shape(self):
return tuple(self.shape[i] for i in self._axis_order)
@property
def T(self):
return self.transpose()
def __str__(self):
return "<GCXS: shape={}, dtype={}, nnz={}, fill_value={}, compressed_axes={}>".format(
self.shape, self.dtype, self.nnz, self.fill_value, self.compressed_axes
)
__repr__ = __str__
__getitem__ = getitem
def _reduce_calc(self, method, axis, keepdims=False, **kwargs):
if axis[0] is None or np.array_equal(axis, np.arange(self.ndim, dtype=np.intp)):
x = self.flatten().tocoo()
out = x.reduce(method, axis=None, keepdims=keepdims, **kwargs)
if keepdims:
return (out.reshape(np.ones(self.ndim, dtype=np.intp)),)
return (out,)
r = np.arange(self.ndim, dtype=np.intp)
compressed_axes = [a for a in r if a not in set(axis)]
x = self.change_compressed_axes(compressed_axes)
idx = np.diff(x.indptr) != 0
indptr = x.indptr[:-1][idx]
indices = (np.arange(x._compressed_shape[0], dtype=self.indptr.dtype))[idx]
data = method.reduceat(x.data, indptr, **kwargs)
counts = x.indptr[1:][idx] - x.indptr[:-1][idx]
arr_attrs = (x, compressed_axes, indices)
n_cols = x._compressed_shape[1]
return (data, counts, axis, n_cols, arr_attrs)
def _reduce_return(self, data, arr_attrs, result_fill_value):
x, compressed_axes, indices = arr_attrs
# prune data
mask = ~equivalent(data, result_fill_value)
data = data[mask]
indices = indices[mask]
out = GCXS(
(data, indices, []),
shape=(x._compressed_shape[0],),
fill_value=result_fill_value,
compressed_axes=None,
)
return out.reshape(tuple(self.shape[d] for d in compressed_axes))
def change_compressed_axes(self, new_compressed_axes):
"""
Returns a new array with specified compressed axes. This operation is similar to converting
a scipy.sparse.csc_matrix to a scipy.sparse.csr_matrix.
Returns
-------
GCXS
A new instance of the input array with compression along the specified dimensions.
"""
if new_compressed_axes == self.compressed_axes:
return self
if self.ndim == 1:
raise NotImplementedError("no axes to compress for 1d array")
new_compressed_axes = tuple(
normalize_axis(new_compressed_axes[i], self.ndim)
for i in range(len(new_compressed_axes))
)
if new_compressed_axes == self.compressed_axes:
return self
if len(new_compressed_axes) >= len(self.shape):
raise ValueError("cannot compress all axes")
if len(set(new_compressed_axes)) != len(new_compressed_axes):
raise ValueError("repeated axis in compressed_axes")
arg = _transpose(self, self.shape, np.arange(self.ndim), new_compressed_axes)
return GCXS(
arg,
shape=self.shape,
compressed_axes=new_compressed_axes,
fill_value=self.fill_value,
)
def tocoo(self):
"""
Convert this :obj:`GCXS` array to a :obj:`COO`.
Returns
-------
sparse.COO
The converted COO array.
"""
if self.ndim == 0:
return COO(
np.array([]),
self.data,
shape=self.shape,
fill_value=self.fill_value,
)
if self.ndim == 1:
return COO(
self.indices[None, :],
self.data,
shape=self.shape,
fill_value=self.fill_value,
)
uncompressed = uncompress_dimension(self.indptr)
coords = np.vstack((uncompressed, self.indices))
order = np.argsort(self._axis_order)
return (
COO(
coords,
self.data,
shape=self._compressed_shape,
fill_value=self.fill_value,
)
.reshape(self._reordered_shape)
.transpose(order)
)
def todense(self):
"""
Convert this :obj:`GCXS` array to a dense :obj:`numpy.ndarray`. Note that
this may take a large amount of memory if the :obj:`GCXS` object's :code:`shape`
is large.
Returns
-------
numpy.ndarray
The converted dense array.
See Also
--------
DOK.todense : Equivalent :obj:`DOK` array method.
COO.todense : Equivalent :obj:`COO` array method.
scipy.sparse.coo_matrix.todense : Equivalent Scipy method.
"""
if self.compressed_axes is None:
out = np.full(self.shape, self.fill_value, self.dtype)
if len(self.indices) != 0:
out[self.indices] = self.data
else:
if len(self.data) != 0:
out[()] = self.data[0]
return out
return self.tocoo().todense()
def todok(self):
from .. import DOK
return DOK.from_coo(self.tocoo()) # probably a temporary solution
def to_scipy_sparse(self):
"""
Converts this :obj:`GCXS` object into a :obj:`scipy.sparse.csr_matrix` or `scipy.sparse.csc_matrix`.
Returns
-------
:obj:`scipy.sparse.csr_matrix` or `scipy.sparse.csc_matrix`
The converted Scipy sparse matrix.
Raises
------
ValueError
If the array is not two-dimensional.
ValueError
If all the array doesn't zero fill-values.
"""
check_zero_fill_value(self)
if self.ndim != 2:
raise ValueError(
"Can only convert a 2-dimensional array to a Scipy sparse matrix."
)
if 0 in self.compressed_axes:
return ss.csr_matrix(
(self.data, self.indices, self.indptr), shape=self.shape
)
else:
return ss.csc_matrix(
(self.data, self.indices, self.indptr), shape=self.shape
)
def asformat(self, format, **kwargs):
"""
Convert this sparse array to a given format.
Parameters
----------
format : str
A format string.
Returns
-------
out : SparseArray
The converted array.
Raises
------
NotImplementedError
If the format isn't supported.
"""
from .._utils import convert_format
format = convert_format(format)
ret = None
if format == "coo":
ret = self.tocoo()
elif format == "dok":
ret = self.todok()
elif format == "csr":
ret = CSR(self)
elif format == "csc":
ret = CSC(self)
elif format == "gcxs":
compressed_axes = kwargs.pop("compressed_axes", self.compressed_axes)
return self.change_compressed_axes(compressed_axes)
if len(kwargs) != 0:
raise TypeError(f"Invalid keyword arguments provided: {kwargs}")
if ret is None:
raise NotImplementedError(f"The given format is not supported: {format}")
return ret
def maybe_densify(self, max_size=1000, min_density=0.25):
"""
Converts this :obj:`GCXS` array to a :obj:`numpy.ndarray` if not too
costly.
Parameters
----------
max_size : int
Maximum number of elements in output
min_density : float
Minimum density of output
Returns
-------
numpy.ndarray
The dense array.
See Also
--------
sparse.GCXS.todense: Converts to Numpy function without checking the cost.
sparse.COO.maybe_densify: The equivalent COO function.
Raises
-------
ValueError
If the returned array would be too large.
"""
if self.size <= max_size or self.density >= min_density:
return self.todense()
else:
raise ValueError(
"Operation would require converting " "large sparse array to dense"
)
def flatten(self, order="C"):
"""
Returns a new :obj:`GCXS` array that is a flattened version of this array.
Returns
-------
GCXS
The flattened output array.
Notes
-----
The :code:`order` parameter is provided just for compatibility with
Numpy and isn't actually supported.
"""
if order not in {"C", None}:
raise NotImplementedError("The `order` parameter is not" "supported.")
return self.reshape(-1)
def reshape(self, shape, order="C", compressed_axes=None):
"""
Returns a new :obj:`GCXS` array that is a reshaped version of this array.
Parameters
----------
shape : tuple[int]
The desired shape of the output array.
compressed_axes : Iterable[int], optional
The axes to compress to store the array. Finds the most efficient storage
by default.
Returns
-------
GCXS
The reshaped output array.
See Also
--------
numpy.ndarray.reshape : The equivalent Numpy function.
sparse.COO.reshape : The equivalent COO function.
Notes
-----
The :code:`order` parameter is provided just for compatibility with
Numpy and isn't actually supported.
"""
if isinstance(shape, Iterable):
shape = tuple(shape)
else:
shape = (shape,)
if order not in {"C", None}:
raise NotImplementedError("The 'order' parameter is not supported")
if any(d == -1 for d in shape):
extra = int(self.size / np.prod([d for d in shape if d != -1]))
shape = tuple([d if d != -1 else extra for d in shape])
if self.shape == shape:
return self
if self.size != reduce(operator.mul, shape, 1):
raise ValueError(
"cannot reshape array of size {} into shape {}".format(self.size, shape)
)
if len(shape) == 0:
return self.tocoo().reshape(shape).asformat("gcxs")
if compressed_axes is None:
if len(shape) == self.ndim:
compressed_axes = self.compressed_axes
elif len(shape) == 1:
compressed_axes = None
else:
compressed_axes = (np.argmin(shape),)
if self.ndim == 1:
arg = _1d_reshape(self, shape, compressed_axes)
else:
arg = _transpose(self, shape, np.arange(self.ndim), compressed_axes)
return GCXS(
arg,
shape=tuple(shape),
compressed_axes=compressed_axes,
fill_value=self.fill_value,
)
@property
def compressed_axes(self):
return self._compressed_axes
def transpose(self, axes=None, compressed_axes=None):
"""
Returns a new array which has the order of the axes switched.
Parameters
----------
axes : Iterable[int], optional
The new order of the axes compared to the previous one. Reverses the axes
by default.
compressed_axes : Iterable[int], optional
The axes to compress to store the array. Finds the most efficient storage
by default.
Returns
-------
GCXS
The new array with the axes in the desired order.
See Also
--------
:obj:`GCXS.T` : A quick property to reverse the order of the axes.
numpy.ndarray.transpose : Numpy equivalent function.
"""
if axes is None:
axes = list(reversed(range(self.ndim)))
# Normalize all axes indices to positive values
axes = normalize_axis(axes, self.ndim)
if len(np.unique(axes)) < len(axes):
raise ValueError("repeated axis in transpose")
if not len(axes) == self.ndim:
raise ValueError("axes don't match array")
axes = tuple(axes)
if axes == tuple(range(self.ndim)):
return self
if self.ndim == 2:
return self._2d_transpose()
shape = tuple(self.shape[ax] for ax in axes)
if compressed_axes is None:
compressed_axes = (np.argmin(shape),)
arg = _transpose(self, shape, axes, compressed_axes, transpose=True)
return GCXS(
arg,
shape=shape,
compressed_axes=compressed_axes,
fill_value=self.fill_value,
)
def _2d_transpose(self):
"""
A function for performing constant-time transposes on 2d GCXS arrays.
Returns
-------
GCXS
The new transposed array with the opposite compressed axes as the input.
See Also
--------
scipy.sparse.csr_matrix.transpose : Scipy equivalent function.
scipy.sparse.csc_matrix.transpose : Scipy equivalent function.
numpy.ndarray.transpose : Numpy equivalent function.
"""
if self.ndim != 2:
raise ValueError(
"cannot perform 2d transpose on array with dimension {}".format(
self.ndim
)
)
compressed_axes = [(self.compressed_axes[0] + 1) % 2]
shape = self.shape[::-1]
return GCXS(
(self.data, self.indices, self.indptr),
shape=shape,
compressed_axes=compressed_axes,
fill_value=self.fill_value,
)
def dot(self, other):
"""
Performs the equivalent of :code:`x.dot(y)` for :obj:`GCXS`.
Parameters
----------
other : Union[GCXS, COO, numpy.ndarray, scipy.sparse.spmatrix]
The second operand of the dot product operation.
Returns
-------
{GCXS, numpy.ndarray}
The result of the dot product. If the result turns out to be dense,
then a dense array is returned, otherwise, a sparse array.
Raises
------
ValueError
If all arguments don't have zero fill-values.
See Also
--------
dot : Equivalent function for two arguments.
:obj:`numpy.dot` : Numpy equivalent function.
scipy.sparse.csr_matrix.dot : Scipy equivalent function.
"""
return dot(self, other)
def __matmul__(self, other):
try:
return matmul(self, other)
except NotImplementedError:
return NotImplemented
def __rmatmul__(self, other):
try:
return matmul(other, self)
except NotImplementedError:
return NotImplemented
def _prune(self):
"""
Prunes data so that if any fill-values are present, they are removed
from both indices and data.
Examples
--------
>>> coords = np.array([[0, 1, 2, 3]])
>>> data = np.array([1, 0, 1, 2])
>>> s = COO(coords, data).asformat('gcxs')
>>> s._prune()
>>> s.nnz
3
"""
mask = ~equivalent(self.data, self.fill_value)
self.data = self.data[mask]
if len(self.indptr):
coords = np.stack((uncompress_dimension(self.indptr), self.indices))
coords = coords[:, mask]
self.indices = coords[1]
row_size = self._compressed_shape[0]
indptr = np.empty(row_size + 1, dtype=self.indptr.dtype)
indptr[0] = 0
np.cumsum(np.bincount(coords[0], minlength=row_size), out=indptr[1:])
self.indptr = indptr
else:
self.indices = self.indices[mask]
class _Compressed2d(GCXS):
def __init__(
self,
arg,
shape=None,
compressed_axes=None,
prune=False,
fill_value=None,
):
if not hasattr(arg, "shape") and shape is None:
raise ValueError("missing `shape` argument")
if shape is not None and hasattr(arg, "shape"):
raise NotImplementedError("Cannot change shape in constructor")
nd = len(shape if shape is not None else arg.shape)
if nd != 2:
raise ValueError(f"{type(self).__name__} must be 2-d, passed {nd}-d shape.")
super().__init__(
arg,
shape=shape,
compressed_axes=compressed_axes,
prune=prune,
fill_value=fill_value,
)
def __str__(self):
return "<{}: shape={}, dtype={}, nnz={}, fill_value={}>".format(
type(self).__name__,
self.shape,
self.dtype,
self.nnz,
self.fill_value,
)
__repr__ = __str__
@property
def ndim(self) -> int:
return 2
class CSR(_Compressed2d):
"""
The CSR or CRS scheme stores a n-dimensional array using n+1 one-dimensional arrays.
The 3 arrays are same as GCRS. The remaining n-2 arrays are for storing the indices of
the non-zero values of the sparse matrix. CSR is simply the transpose of CSC.
Sparse supports 2-D CSR.
"""
def __init__(self, arg, shape=None, prune=False, fill_value=None):
super().__init__(arg, shape=shape, compressed_axes=(0,), fill_value=fill_value)
@classmethod
def from_scipy_sparse(cls, x):
x = x.asformat("csr", copy=False)
return cls((x.data, x.indices, x.indptr), shape=x.shape)
def transpose(self, axes: None = None, copy: bool = False) -> "CSC":
if axes is not None:
raise ValueError()
if copy:
self = self.copy()
return CSC((self.data, self.indices, self.indptr), self.shape[::-1])
class CSC(_Compressed2d):
"""
The CSC or CCS scheme stores a n-dimensional array using n+1 one-dimensional arrays.
The 3 arrays are same as GCCS. The remaining n-2 arrays are for storing the indices of
the non-zero values of the sparse matrix. CSC is simply the transpose of CSR.
Sparse supports 2-D CSC.
"""
def __init__(self, arg, shape=None, prune=False, fill_value=None):
super().__init__(arg, shape=shape, compressed_axes=(1,), fill_value=fill_value)
@classmethod
def from_scipy_sparse(cls, x):
x = x.asformat("csc", copy=False)
return cls((x.data, x.indices, x.indptr), shape=x.shape)
def transpose(self, axes: None = None, copy: bool = False) -> CSR:
if axes is not None:
raise ValueError()
if copy:
self = self.copy()
return CSR((self.data, self.indices, self.indptr), self.shape[::-1])