-
-
Notifications
You must be signed in to change notification settings - Fork 132
/
Copy path_umath.py
880 lines (714 loc) · 26.1 KB
/
_umath.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
import itertools
import numba
import numpy as np
import scipy.sparse
from itertools import zip_longest
from ._utils import isscalar, equivalent, _zero_of_dtype
def elemwise(func, *args, **kwargs):
"""
Apply a function to any number of arguments.
Parameters
----------
func : Callable
The function to apply. Must support broadcasting.
*args : tuple, optional
The arguments to the function. Can be :obj:`SparseArray` objects
or :obj:`scipy.sparse.spmatrix` objects.
**kwargs : dict, optional
Any additional arguments to pass to the function.
Returns
-------
SparseArray
The result of applying the function.
Raises
------
ValueError
If the operation would result in a dense matrix, or if the operands
don't have broadcastable shapes.
See Also
--------
:obj:`numpy.ufunc` :
A similar Numpy construct. Note that any :code:`ufunc` can be used
as the :code:`func` input to this function.
Notes
-----
Previously, operations with Numpy arrays were sometimes supported. Now,
it is necessary to convert Numpy arrays to :obj:`COO` objects.
"""
return _Elemwise(func, *args, **kwargs).get_result()
@numba.jit(nopython=True, nogil=True)
def _match_arrays(a, b): # pragma: no cover
"""
Finds all indexes into a and b such that a[i] = b[j]. The outputs are sorted
in lexographical order.
Parameters
----------
a, b : np.ndarray
The input 1-D arrays to match. If matching of multiple fields is
needed, use np.recarrays. These two arrays must be sorted.
Returns
-------
a_idx, b_idx : np.ndarray
The output indices of every possible pair of matching elements.
"""
if len(a) == 0 or len(b) == 0:
return np.empty(0, dtype=np.uintp), np.empty(0, dtype=np.uintp)
a_ind, b_ind = [], []
nb = len(b)
ib = 0
match = 0
for ia, j in enumerate(a):
if j == b[match]:
ib = match
while ib < nb and j >= b[ib]:
if j == b[ib]:
a_ind.append(ia)
b_ind.append(ib)
if b[match] < b[ib]:
match = ib
ib += 1
return np.array(a_ind, dtype=np.uintp), np.array(b_ind, dtype=np.uintp)
def _get_nary_broadcast_shape(*shapes):
"""
Broadcast any number of shapes to a result shape.
Parameters
----------
*shapes : tuple[tuple[int]]
The shapes to broadcast.
Returns
-------
tuple[int]
The output shape.
Raises
------
ValueError
If the input shapes cannot be broadcast to a single shape.
"""
result_shape = ()
for shape in shapes:
try:
result_shape = _get_broadcast_shape(shape, result_shape)
except ValueError:
shapes_str = ", ".join(str(shape) for shape in shapes)
raise ValueError(
"operands could not be broadcast together with shapes %s" % shapes_str
)
return result_shape
def _get_broadcast_shape(shape1, shape2, is_result=False):
"""
Get the overall broadcasted shape.
Parameters
----------
shape1, shape2 : tuple[int]
The input shapes to broadcast together.
is_result : bool
Whether or not shape2 is also the result shape.
Returns
-------
result_shape : tuple[int]
The overall shape of the result.
Raises
------
ValueError
If the two shapes cannot be broadcast together.
"""
# https://stackoverflow.com/a/47244284/774273
if not all(
(l1 == l2) or (l1 == 1) or ((l2 == 1) and not is_result)
for l1, l2 in zip(shape1[::-1], shape2[::-1])
):
raise ValueError(
"operands could not be broadcast together with shapes %s, %s"
% (shape1, shape2)
)
result_shape = tuple(
l1 if l1 != 1 else l2
for l1, l2 in zip_longest(shape1[::-1], shape2[::-1], fillvalue=1)
)[::-1]
return result_shape
def _get_broadcast_parameters(shape, broadcast_shape):
"""
Get the broadcast parameters.
Parameters
----------
shape : tuple[int]
The input shape.
broadcast_shape
The shape to broadcast to.
Returns
-------
params : list
A list containing None if the dimension isn't in the original array, False if
it needs to be broadcast, and True if it doesn't.
"""
params = [
None if l1 is None else l1 == l2
for l1, l2 in zip_longest(shape[::-1], broadcast_shape[::-1], fillvalue=None)
][::-1]
return params
def _get_reduced_coords(coords, params):
"""
Gets only those dimensions of the coordinates that don't need to be broadcast.
Parameters
----------
coords : np.ndarray
The coordinates to reduce.
params : list
The params from which to check which dimensions to get.
Returns
-------
reduced_coords : np.ndarray
The reduced coordinates.
"""
reduced_params = [bool(param) for param in params]
return coords[reduced_params]
def _get_reduced_shape(shape, params):
"""
Gets only those dimensions of the coordinates that don't need to be broadcast.
Parameters
----------
shape : np.ndarray
The coordinates to reduce.
params : list
The params from which to check which dimensions to get.
Returns
-------
reduced_coords : np.ndarray
The reduced coordinates.
"""
reduced_shape = tuple(l for l, p in zip(shape, params) if p)
return reduced_shape
def _get_expanded_coords_data(coords, data, params, broadcast_shape):
"""
Expand coordinates/data to broadcast_shape. Does most of the heavy lifting for broadcast_to.
Produces sorted output for sorted inputs.
Parameters
----------
coords : np.ndarray
The coordinates to expand.
data : np.ndarray
The data corresponding to the coordinates.
params : list
The broadcast parameters.
broadcast_shape : tuple[int]
The shape to broadcast to.
Returns
-------
expanded_coords : np.ndarray
List of 1-D arrays. Each item in the list has one dimension of coordinates.
expanded_data : np.ndarray
The data corresponding to expanded_coords.
"""
first_dim = -1
expand_shapes = []
for d, p, l in zip(range(len(broadcast_shape)), params, broadcast_shape):
if p and first_dim == -1:
expand_shapes.append(coords.shape[1])
first_dim = d
if not p:
expand_shapes.append(l)
all_idx = _cartesian_product(*(np.arange(d, dtype=np.intp) for d in expand_shapes))
false_dim = 0
dim = 0
expanded_coords = np.empty((len(broadcast_shape), all_idx.shape[1]), dtype=np.intp)
if first_dim != -1:
expanded_data = data[all_idx[first_dim]]
else:
expanded_coords = (
all_idx if len(data) else np.empty((0, all_idx.shape[1]), dtype=np.intp)
)
expanded_data = np.repeat(data, np.prod(broadcast_shape, dtype=np.int64))
return np.asarray(expanded_coords), np.asarray(expanded_data)
for d, p, l in zip(range(len(broadcast_shape)), params, broadcast_shape):
if p:
expanded_coords[d] = coords[dim, all_idx[first_dim]]
else:
expanded_coords[d] = all_idx[false_dim + (d > first_dim)]
false_dim += 1
if p is not None:
dim += 1
return np.asarray(expanded_coords), np.asarray(expanded_data)
# (c) senderle
# Taken from https://stackoverflow.com/a/11146645/774273
# License: https://creativecommons.org/licenses/by-sa/3.0/
def _cartesian_product(*arrays):
"""
Get the cartesian product of a number of arrays.
Parameters
----------
*arrays : Tuple[np.ndarray]
The arrays to get a cartesian product of. Always sorted with respect
to the original array.
Returns
-------
out : np.ndarray
The overall cartesian product of all the input arrays.
"""
broadcastable = np.ix_(*arrays)
broadcasted = np.broadcast_arrays(*broadcastable)
rows, cols = np.prod(broadcasted[0].shape), len(broadcasted)
dtype = np.result_type(*arrays)
out = np.empty(rows * cols, dtype=dtype)
start, end = 0, rows
for a in broadcasted:
out[start:end] = a.reshape(-1)
start, end = end, end + rows
return out.reshape(cols, rows)
def _get_matching_coords(coords, params):
"""
Get the matching coords across a number of broadcast operands.
Parameters
----------
coords : list[numpy.ndarray]
The input coordinates.
params : list[Union[bool, none]]
The broadcast parameters.
Returns
-------
numpy.ndarray
The broacasted coordinates
"""
matching_coords = []
dims = np.zeros(len(coords), dtype=np.uint8)
for p_all in zip(*params):
for i, p in enumerate(p_all):
if p:
matching_coords.append(coords[i][dims[i]])
break
else:
matching_coords.append(coords[dims[0]])
for i, p in enumerate(p_all):
if p is not None:
dims[i] += 1
return np.asarray(matching_coords, dtype=np.intp)
def broadcast_to(x, shape):
"""
Performs the equivalent of :obj:`numpy.broadcast_to` for :obj:`COO`. Note that
this function returns a new array instead of a view.
Parameters
----------
shape : tuple[int]
The shape to broadcast the data to.
Returns
-------
COO
The broadcasted sparse array.
Raises
------
ValueError
If the operand cannot be broadcast to the given shape.
See Also
--------
:obj:`numpy.broadcast_to` : NumPy equivalent function
"""
from ._coo import COO
if shape == x.shape:
return x
result_shape = _get_broadcast_shape(x.shape, shape, is_result=True)
params = _get_broadcast_parameters(x.shape, result_shape)
coords, data = _get_expanded_coords_data(x.coords, x.data, params, result_shape)
# Check if all the non-broadcast axes are next to each other
nonbroadcast_idx = [idx for idx, p in enumerate(params) if p]
diff_nonbroadcast_idx = [
a - b for a, b in zip(nonbroadcast_idx[1:], nonbroadcast_idx[:-1])
]
sorted = all(d == 1 for d in diff_nonbroadcast_idx)
return COO(
coords,
data,
shape=result_shape,
has_duplicates=False,
sorted=sorted,
fill_value=x.fill_value,
)
# TODO: Figure out the right way to type this
# TODO: Figure out how to do 1d COO + CSR or CSC
def _resolve_result_type(args: "list[ArrayLike]") -> "Type":
from ._compressed import GCXS, CSR, CSC
from ._coo import COO
from ._dok import DOK
from ._sparse_array import SparseArray
from ._compressed.compressed import _Compressed2d
args = [arg for arg in args if isinstance(arg, SparseArray)]
if all(isinstance(arg, DOK) for arg in args):
out_type = DOK
elif all(isinstance(arg, CSR) for arg in args):
out_type = CSR
elif all(isinstance(arg, CSC) for arg in args):
out_type = CSC
elif all(isinstance(arg, _Compressed2d) for arg in args):
out_type = CSR
elif all(isinstance(arg, GCXS) for arg in args):
out_type = GCXS
else:
out_type = COO
return out_type
def _from_scipy_sparse(a):
from ._compressed import CSR, CSC
from ._coo import COO
from ._dok import DOK
assert isinstance(a, scipy.sparse.spmatrix)
if isinstance(a, scipy.sparse.csr_matrix):
return CSR(a)
elif isinstance(a, scipy.sparse.csc_matrix):
return CSC(a)
elif isinstance(a, scipy.sparse.dok_matrix):
return DOK(a.shape, data=dict(a))
else:
return COO(a)
class _Elemwise:
def __init__(self, func, *args, **kwargs):
"""
Initialize the element-wise function calculator.
Parameters
----------
func : types.Callable
The function to compute
*args : tuple[Union[SparseArray, ndarray, scipy.sparse.spmatrix]]
The arguments to compute the function on.
**kwargs : dict
Extra arguments to pass to the function.
"""
from ._coo import COO
from ._sparse_array import SparseArray
from ._compressed import GCXS, CSR, CSC
from ._compressed.compressed import _Compressed2d
from ._dok import DOK
args = [
arg
if not isinstance(arg, scipy.sparse.spmatrix)
else _from_scipy_sparse(arg)
for arg in args
]
processed_args = []
self.out_type = _resolve_result_type(args)
# Should this happen before dispatch?
# Hmm, this may need major major changes.
# Case to consider: CSR or CSC + 1d COO
for arg in args:
if self.out_type != COO and isinstance(arg, _Compressed2d):
processed_args.append(arg)
elif isscalar(arg) or isinstance(arg, np.ndarray):
# Faster and more reliable to pass ()-shaped ndarrays as scalars.
processed_args.append(np.asarray(arg))
elif isinstance(arg, SparseArray):
if not isinstance(arg, COO):
arg = arg.asformat(COO)
if arg.ndim == 0:
arg = arg.todense()
processed_args.append(arg)
else:
self.args = None
return
self.args = tuple(processed_args)
self.func = func
self.dtype = kwargs.pop("dtype", None)
self.kwargs = kwargs
self.cache = {}
self._dense_result = False
self._check_broadcast()
self._get_fill_value()
def get_result(self):
from ._coo import COO
from ._sparse_array import SparseArray
from ._compressed.compressed import _Compressed2d
if self.args is None:
return NotImplemented
if self._dense_result:
args = [a.todense() if isinstance(a, SparseArray) else a for a in self.args]
return self.func(*args, **self.kwargs)
if issubclass(self.out_type, _Compressed2d):
return self._get_result_compressed_2d()
if any(s == 0 for s in self.shape):
data = np.empty((0,), dtype=self.fill_value.dtype)
coords = np.empty((0, len(self.shape)), dtype=np.intp)
return COO(
coords,
data,
shape=self.shape,
has_duplicates=False,
fill_value=self.fill_value,
)
data_list = []
coords_list = []
for mask in itertools.product(
*[[True, False] if isinstance(arg, COO) else [None] for arg in self.args]
):
if not any(mask):
continue
r = self._get_func_coords_data(mask)
if r is not None:
coords_list.append(r[0])
data_list.append(r[1])
# Concatenate matches and mismatches
data = (
np.concatenate(data_list)
if len(data_list)
else np.empty((0,), dtype=self.fill_value.dtype)
)
coords = (
np.concatenate(coords_list, axis=1)
if len(coords_list)
else np.empty((0, len(self.shape)), dtype=np.intp)
)
return COO(
coords,
data,
shape=self.shape,
has_duplicates=False,
fill_value=self.fill_value,
).asformat(self.out_type)
def _get_result_compressed_2d(self):
from ._compressed import elemwise as elemwise2d
from ._compressed.compressed import _Compressed2d
if len(self.args) == 1:
result = elemwise2d.op_unary(self.func, self.args[0])
processed_args = []
for arg in self.args:
if isinstance(arg, self.out_type):
processed_args.append(arg)
elif isinstance(arg, _Compressed2d):
processed_args.append(self.out_type(arg))
elif isinstance(arg, np.ndarray):
processed_args.append(np.broadcast_to(arg, self.shape))
else:
raise NotImplementedError()
if len(processed_args) == 2:
result = elemwise2d.binary_op(self.func, *processed_args)
return result
def _get_fill_value(self):
"""
A function that finds and returns the fill-value.
Raises
------
ValueError
If the fill-value is inconsistent.
"""
from ._sparse_array import SparseArray
zero_args = tuple(
arg.fill_value[...] if isinstance(arg, SparseArray) else arg
for arg in self.args
)
# Some elemwise functions require a dtype argument, some abhorr it.
try:
fill_value_array = self.func(
*np.broadcast_arrays(*zero_args), dtype=self.dtype, **self.kwargs
)
except TypeError:
fill_value_array = self.func(
*np.broadcast_arrays(*zero_args), **self.kwargs
)
try:
fill_value = fill_value_array[(0,) * fill_value_array.ndim]
except IndexError:
zero_args = tuple(
arg.fill_value
if isinstance(arg, SparseArray)
else _zero_of_dtype(arg.dtype)
for arg in self.args
)
fill_value = self.func(*zero_args, **self.kwargs)[()]
equivalent_fv = equivalent(fill_value, fill_value_array).all()
if not equivalent_fv and self.shape != self.ndarray_shape:
raise ValueError(
"Performing a mixed sparse-dense operation that would result in a dense array. "
"Please make sure that func(sparse_fill_values, ndarrays) is a constant array."
)
elif not equivalent_fv:
self._dense_result = True
# Store dtype separately if needed.
if self.dtype is not None:
fill_value = fill_value.astype(self.dtype)
self.fill_value = fill_value
self.dtype = self.fill_value.dtype
def _check_broadcast(self):
"""
Checks if adding the ndarrays changes the broadcast shape.
Raises
------
ValueError
If the check fails.
"""
from ._coo import COO
full_shape = _get_nary_broadcast_shape(*tuple(arg.shape for arg in self.args))
non_ndarray_shape = _get_nary_broadcast_shape(
*tuple(arg.shape for arg in self.args if isinstance(arg, COO))
)
ndarray_shape = _get_nary_broadcast_shape(
*tuple(arg.shape for arg in self.args if isinstance(arg, np.ndarray))
)
self.shape = full_shape
self.ndarray_shape = ndarray_shape
self.non_ndarray_shape = non_ndarray_shape
def _get_func_coords_data(self, mask):
"""
Gets the coords/data for a certain mask
Parameters
----------
mask : tuple[Union[bool, NoneType]]
The mask determining whether to match or unmatch.
Returns
-------
None or tuple
The coords/data tuple for the given mask.
"""
from ._coo import COO
matched_args = [arg for arg, m in zip(self.args, mask) if m is not None and m]
unmatched_args = [
arg for arg, m in zip(self.args, mask) if m is not None and not m
]
ndarray_args = [arg for arg, m in zip(self.args, mask) if m is None]
matched_broadcast_shape = _get_nary_broadcast_shape(
*tuple(arg.shape for arg in itertools.chain(matched_args, ndarray_args))
)
matched_arrays = self._match_coo(
*matched_args, cache=self.cache, broadcast_shape=matched_broadcast_shape
)
func_args = []
m_arg = 0
for arg, m in zip(self.args, mask):
if m is None:
func_args.append(
np.broadcast_to(arg, matched_broadcast_shape)[
tuple(matched_arrays[0].coords)
]
)
continue
if m:
func_args.append(matched_arrays[m_arg].data)
m_arg += 1
else:
func_args.append(arg.fill_value)
# Try our best to preserve the output dtype.
try:
func_data = self.func(*func_args, dtype=self.dtype, **self.kwargs)
except TypeError:
try:
func_args = np.broadcast_arrays(*func_args)
out = np.empty(func_args[0].shape, dtype=self.dtype)
func_data = self.func(*func_args, out=out, **self.kwargs)
except TypeError:
func_data = self.func(*func_args, **self.kwargs).astype(self.dtype)
unmatched_mask = ~equivalent(func_data, self.fill_value)
if not unmatched_mask.any():
return None
func_coords = matched_arrays[0].coords[:, unmatched_mask]
func_data = func_data[unmatched_mask]
if matched_arrays[0].shape != self.shape:
params = _get_broadcast_parameters(matched_arrays[0].shape, self.shape)
func_coords, func_data = _get_expanded_coords_data(
func_coords, func_data, params, self.shape
)
if all(m is None or m for m in mask):
return func_coords, func_data
# Not really sorted but we need the sortedness.
func_array = COO(
func_coords, func_data, self.shape, has_duplicates=False, sorted=True
)
unmatched_mask = np.ones(func_array.nnz, dtype=np.bool_)
for arg in unmatched_args:
matched_idx = self._match_coo(func_array, arg, return_midx=True)[0]
unmatched_mask[matched_idx] = False
coords = np.asarray(func_array.coords[:, unmatched_mask], order="C")
data = np.asarray(func_array.data[unmatched_mask], order="C")
return coords, data
@staticmethod
def _match_coo(*args, **kwargs):
"""
Matches the coordinates for any number of input :obj:`COO` arrays.
Equivalent to "sparse" broadcasting for all arrays.
Parameters
----------
*args : Tuple[COO]
The input :obj:`COO` arrays.
return_midx : bool
Whether to return matched indices or matched arrays. Matching
only supported for two arrays. ``False`` by default.
cache : dict
Cache of things already matched. No cache by default.
Returns
-------
matched_idx : List[ndarray]
The indices of matched elements in the original arrays. Only returned if
``return_midx`` is ``True``.
matched_arrays : List[COO]
The expanded, matched :obj:`COO` objects. Only returned if
``return_midx`` is ``False``.
"""
from ._coo import COO
from ._coo.common import linear_loc
cache = kwargs.pop("cache", None)
return_midx = kwargs.pop("return_midx", False)
broadcast_shape = kwargs.pop("broadcast_shape", None)
if kwargs:
raise ValueError("Unknown kwargs: {}".format(kwargs.keys()))
if return_midx and (len(args) != 2 or cache is not None):
raise NotImplementedError(
"Matching indices only supported for two args, and no cache."
)
matched_arrays = [args[0]]
cache_key = [id(args[0])]
for arg2 in args[1:]:
cache_key.append(id(arg2))
key = tuple(cache_key)
if cache is not None and key in cache:
matched_arrays = cache[key]
continue
cargs = [matched_arrays[0], arg2]
current_shape = _get_broadcast_shape(matched_arrays[0].shape, arg2.shape)
params = [
_get_broadcast_parameters(arg.shape, current_shape) for arg in cargs
]
reduced_params = [all(p) for p in zip(*params)]
reduced_shape = _get_reduced_shape(
arg2.shape, _rev_idx(reduced_params, arg2.ndim)
)
reduced_coords = [
_get_reduced_coords(arg.coords, _rev_idx(reduced_params, arg.ndim))
for arg in cargs
]
linear = [linear_loc(rc, reduced_shape) for rc in reduced_coords]
sorted_idx = [np.argsort(idx) for idx in linear]
linear = [idx[s] for idx, s in zip(linear, sorted_idx)]
matched_idx = _match_arrays(*linear)
if return_midx:
matched_idx = [
sidx[midx] for sidx, midx in zip(sorted_idx, matched_idx)
]
return matched_idx
coords = [arg.coords[:, s] for arg, s in zip(cargs, sorted_idx)]
mcoords = [c[:, idx] for c, idx in zip(coords, matched_idx)]
mcoords = _get_matching_coords(mcoords, params)
mdata = [arg.data[sorted_idx[0]][matched_idx[0]] for arg in matched_arrays]
mdata.append(arg2.data[sorted_idx[1]][matched_idx[1]])
# The coords aren't truly sorted, but we don't need them, so it's
# best to avoid the extra cost.
matched_arrays = [
COO(mcoords, md, shape=current_shape, sorted=True, has_duplicates=False)
for md in mdata
]
if cache is not None:
cache[key] = matched_arrays
if broadcast_shape is not None and matched_arrays[0].shape != broadcast_shape:
params = _get_broadcast_parameters(matched_arrays[0].shape, broadcast_shape)
coords, idx = _get_expanded_coords_data(
matched_arrays[0].coords,
np.arange(matched_arrays[0].nnz),
params,
broadcast_shape,
)
matched_arrays = [
COO(
coords,
arr.data[idx],
shape=broadcast_shape,
sorted=True,
has_duplicates=False,
)
for arr in matched_arrays
]
return matched_arrays
def _rev_idx(arg, idx):
if idx == 0:
return arg[len(arg) :]
return arg[-idx:]