-
-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy pathtest_backends.py
6629 lines (5679 loc) · 255 KB
/
test_backends.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from __future__ import annotations
import contextlib
import gzip
import itertools
import math
import os.path
import pickle
import platform
import re
import shutil
import sys
import tempfile
import uuid
import warnings
from collections.abc import Generator, Iterator, Mapping
from contextlib import ExitStack
from io import BytesIO
from os import listdir
from pathlib import Path
from typing import TYPE_CHECKING, Any, Final, Literal, cast
from unittest.mock import patch
import numpy as np
import pandas as pd
import pytest
from packaging.version import Version
from pandas.errors import OutOfBoundsDatetime
import xarray as xr
from xarray import (
DataArray,
Dataset,
backends,
load_dataarray,
load_dataset,
open_dataarray,
open_dataset,
open_mfdataset,
save_mfdataset,
)
from xarray.backends.common import robust_getitem
from xarray.backends.h5netcdf_ import H5netcdfBackendEntrypoint
from xarray.backends.netcdf3 import _nc3_dtype_coercions
from xarray.backends.netCDF4_ import (
NetCDF4BackendEntrypoint,
_extract_nc4_variable_encoding,
)
from xarray.backends.pydap_ import PydapDataStore
from xarray.backends.scipy_ import ScipyBackendEntrypoint
from xarray.backends.zarr import ZarrStore
from xarray.coders import CFDatetimeCoder
from xarray.coding.cftime_offsets import cftime_range
from xarray.coding.strings import check_vlen_dtype, create_vlen_dtype
from xarray.coding.variables import SerializationWarning
from xarray.conventions import encode_dataset_coordinates
from xarray.core import indexing
from xarray.core.options import set_options
from xarray.core.utils import module_available
from xarray.namedarray.pycompat import array_type
from xarray.tests import (
assert_allclose,
assert_array_equal,
assert_equal,
assert_identical,
assert_no_warnings,
has_dask,
has_h5netcdf_1_4_0_or_above,
has_netCDF4,
has_numpy_2,
has_scipy,
has_zarr,
has_zarr_v3,
mock,
network,
requires_cftime,
requires_dask,
requires_fsspec,
requires_h5netcdf,
requires_h5netcdf_1_4_0_or_above,
requires_h5netcdf_ros3,
requires_iris,
requires_lithops,
requires_netcdf,
requires_netCDF4,
requires_netCDF4_1_6_2_or_above,
requires_netCDF4_1_7_0_or_above,
requires_pydap,
requires_scipy,
requires_scipy_or_netCDF4,
requires_zarr,
)
from xarray.tests.test_coding_times import (
_ALL_CALENDARS,
_NON_STANDARD_CALENDARS,
_STANDARD_CALENDARS,
)
from xarray.tests.test_dataset import (
create_append_string_length_mismatch_test_data,
create_append_test_data,
create_test_data,
)
try:
import netCDF4 as nc4
except ImportError:
pass
try:
import dask
import dask.array as da
except ImportError:
pass
if has_zarr:
import zarr
import zarr.codecs
if has_zarr_v3:
from zarr.storage import MemoryStore as KVStore
ZARR_FORMATS = [2, 3]
else:
ZARR_FORMATS = [2]
try:
from zarr import ( # type: ignore[attr-defined,no-redef,unused-ignore]
KVStoreV3 as KVStore,
)
except ImportError:
KVStore = None # type: ignore[assignment,misc,unused-ignore]
else:
KVStore = None # type: ignore[assignment,misc,unused-ignore]
ZARR_FORMATS = []
@pytest.fixture(scope="module", params=ZARR_FORMATS)
def default_zarr_format(request) -> Generator[None, None]:
if has_zarr_v3:
with zarr.config.set(default_zarr_format=request.param):
yield
else:
yield
def skip_if_zarr_format_3(reason: str):
if has_zarr_v3 and zarr.config["default_zarr_format"] == 3:
pytest.skip(reason=f"Unsupported with zarr_format=3: {reason}")
def skip_if_zarr_format_2(reason: str):
if not has_zarr_v3 or (zarr.config["default_zarr_format"] == 2):
pytest.skip(reason=f"Unsupported with zarr_format=2: {reason}")
ON_WINDOWS = sys.platform == "win32"
default_value = object()
dask_array_type = array_type("dask")
if TYPE_CHECKING:
from xarray.backends.api import T_NetcdfEngine, T_NetcdfTypes
def open_example_dataset(name, *args, **kwargs) -> Dataset:
return open_dataset(
os.path.join(os.path.dirname(__file__), "data", name), *args, **kwargs
)
def open_example_mfdataset(names, *args, **kwargs) -> Dataset:
return open_mfdataset(
[os.path.join(os.path.dirname(__file__), "data", name) for name in names],
*args,
**kwargs,
)
def create_masked_and_scaled_data(dtype: np.dtype) -> Dataset:
x = np.array([np.nan, np.nan, 10, 10.1, 10.2], dtype=dtype)
encoding = {
"_FillValue": -1,
"add_offset": dtype.type(10),
"scale_factor": dtype.type(0.1),
"dtype": "i2",
}
return Dataset({"x": ("t", x, {}, encoding)})
def create_encoded_masked_and_scaled_data(dtype: np.dtype) -> Dataset:
attributes = {
"_FillValue": -1,
"add_offset": dtype.type(10),
"scale_factor": dtype.type(0.1),
}
return Dataset(
{"x": ("t", np.array([-1, -1, 0, 1, 2], dtype=np.int16), attributes)}
)
def create_unsigned_masked_scaled_data(dtype: np.dtype) -> Dataset:
encoding = {
"_FillValue": -1,
"_Unsigned": "true",
"dtype": "i1",
"add_offset": dtype.type(10),
"scale_factor": dtype.type(0.1),
}
x = np.array([10.0, 10.1, 22.7, 22.8, np.nan], dtype=dtype)
return Dataset({"x": ("t", x, {}, encoding)})
def create_encoded_unsigned_masked_scaled_data(dtype: np.dtype) -> Dataset:
# These are values as written to the file: the _FillValue will
# be represented in the signed form.
attributes = {
"_FillValue": -1,
"_Unsigned": "true",
"add_offset": dtype.type(10),
"scale_factor": dtype.type(0.1),
}
# Create unsigned data corresponding to [0, 1, 127, 128, 255] unsigned
sb = np.asarray([0, 1, 127, -128, -1], dtype="i1")
return Dataset({"x": ("t", sb, attributes)})
def create_bad_unsigned_masked_scaled_data(dtype: np.dtype) -> Dataset:
encoding = {
"_FillValue": 255,
"_Unsigned": True,
"dtype": "i1",
"add_offset": dtype.type(10),
"scale_factor": dtype.type(0.1),
}
x = np.array([10.0, 10.1, 22.7, 22.8, np.nan], dtype=dtype)
return Dataset({"x": ("t", x, {}, encoding)})
def create_bad_encoded_unsigned_masked_scaled_data(dtype: np.dtype) -> Dataset:
# These are values as written to the file: the _FillValue will
# be represented in the signed form.
attributes = {
"_FillValue": -1,
"_Unsigned": True,
"add_offset": dtype.type(10),
"scale_factor": dtype.type(0.1),
}
# Create signed data corresponding to [0, 1, 127, 128, 255] unsigned
sb = np.asarray([0, 1, 127, -128, -1], dtype="i1")
return Dataset({"x": ("t", sb, attributes)})
def create_signed_masked_scaled_data(dtype: np.dtype) -> Dataset:
encoding = {
"_FillValue": -127,
"_Unsigned": "false",
"dtype": "i1",
"add_offset": dtype.type(10),
"scale_factor": dtype.type(0.1),
}
x = np.array([-1.0, 10.1, 22.7, np.nan], dtype=dtype)
return Dataset({"x": ("t", x, {}, encoding)})
def create_encoded_signed_masked_scaled_data(dtype: np.dtype) -> Dataset:
# These are values as written to the file: the _FillValue will
# be represented in the signed form.
attributes = {
"_FillValue": -127,
"_Unsigned": "false",
"add_offset": dtype.type(10),
"scale_factor": dtype.type(0.1),
}
# Create signed data corresponding to [0, 1, 127, 128, 255] unsigned
sb = np.asarray([-110, 1, 127, -127], dtype="i1")
return Dataset({"x": ("t", sb, attributes)})
def create_unsigned_false_masked_scaled_data(dtype: np.dtype) -> Dataset:
encoding = {
"_FillValue": 255,
"_Unsigned": "false",
"dtype": "u1",
"add_offset": dtype.type(10),
"scale_factor": dtype.type(0.1),
}
x = np.array([-1.0, 10.1, 22.7, np.nan], dtype=dtype)
return Dataset({"x": ("t", x, {}, encoding)})
def create_encoded_unsigned_false_masked_scaled_data(dtype: np.dtype) -> Dataset:
# These are values as written to the file: the _FillValue will
# be represented in the unsigned form.
attributes = {
"_FillValue": 255,
"_Unsigned": "false",
"add_offset": dtype.type(10),
"scale_factor": dtype.type(0.1),
}
# Create unsigned data corresponding to [-110, 1, 127, 255] signed
sb = np.asarray([146, 1, 127, 255], dtype="u1")
return Dataset({"x": ("t", sb, attributes)})
def create_boolean_data() -> Dataset:
attributes = {"units": "-"}
return Dataset({"x": ("t", [True, False, False, True], attributes)})
class TestCommon:
def test_robust_getitem(self) -> None:
class UnreliableArrayFailure(Exception):
pass
class UnreliableArray:
def __init__(self, array, failures=1):
self.array = array
self.failures = failures
def __getitem__(self, key):
if self.failures > 0:
self.failures -= 1
raise UnreliableArrayFailure
return self.array[key]
array = UnreliableArray([0])
with pytest.raises(UnreliableArrayFailure):
array[0]
assert array[0] == 0
actual = robust_getitem(array, 0, catch=UnreliableArrayFailure, initial_delay=0)
assert actual == 0
class NetCDF3Only:
netcdf3_formats: tuple[T_NetcdfTypes, ...] = ("NETCDF3_CLASSIC", "NETCDF3_64BIT")
@requires_scipy
def test_dtype_coercion_error(self) -> None:
"""Failing dtype coercion should lead to an error"""
for dtype, format in itertools.product(
_nc3_dtype_coercions, self.netcdf3_formats
):
if dtype == "bool":
# coerced upcast (bool to int8) ==> can never fail
continue
# Using the largest representable value, create some data that will
# no longer compare equal after the coerced downcast
maxval = np.iinfo(dtype).max
x = np.array([0, 1, 2, maxval], dtype=dtype)
ds = Dataset({"x": ("t", x, {})})
with create_tmp_file(allow_cleanup_failure=False) as path:
with pytest.raises(ValueError, match="could not safely cast"):
ds.to_netcdf(path, format=format)
class DatasetIOBase:
engine: T_NetcdfEngine | None = None
file_format: T_NetcdfTypes | None = None
def create_store(self):
raise NotImplementedError()
@contextlib.contextmanager
def roundtrip(
self, data, save_kwargs=None, open_kwargs=None, allow_cleanup_failure=False
):
if save_kwargs is None:
save_kwargs = {}
if open_kwargs is None:
open_kwargs = {}
with create_tmp_file(allow_cleanup_failure=allow_cleanup_failure) as path:
self.save(data, path, **save_kwargs)
with self.open(path, **open_kwargs) as ds:
yield ds
@contextlib.contextmanager
def roundtrip_append(
self, data, save_kwargs=None, open_kwargs=None, allow_cleanup_failure=False
):
if save_kwargs is None:
save_kwargs = {}
if open_kwargs is None:
open_kwargs = {}
with create_tmp_file(allow_cleanup_failure=allow_cleanup_failure) as path:
for i, key in enumerate(data.variables):
mode = "a" if i > 0 else "w"
self.save(data[[key]], path, mode=mode, **save_kwargs)
with self.open(path, **open_kwargs) as ds:
yield ds
# The save/open methods may be overwritten below
def save(self, dataset, path, **kwargs):
return dataset.to_netcdf(
path, engine=self.engine, format=self.file_format, **kwargs
)
@contextlib.contextmanager
def open(self, path, **kwargs):
with open_dataset(path, engine=self.engine, **kwargs) as ds:
yield ds
def test_zero_dimensional_variable(self) -> None:
expected = create_test_data()
expected["float_var"] = ([], 1.0e9, {"units": "units of awesome"})
expected["bytes_var"] = ([], b"foobar")
expected["string_var"] = ([], "foobar")
with self.roundtrip(expected) as actual:
assert_identical(expected, actual)
def test_write_store(self) -> None:
expected = create_test_data()
with self.create_store() as store:
expected.dump_to_store(store)
# we need to cf decode the store because it has time and
# non-dimension coordinates
with xr.decode_cf(store) as actual:
assert_allclose(expected, actual)
def check_dtypes_roundtripped(self, expected, actual):
for k in expected.variables:
expected_dtype = expected.variables[k].dtype
# For NetCDF3, the backend should perform dtype coercion
if (
isinstance(self, NetCDF3Only)
and str(expected_dtype) in _nc3_dtype_coercions
):
expected_dtype = np.dtype(_nc3_dtype_coercions[str(expected_dtype)])
actual_dtype = actual.variables[k].dtype
# TODO: check expected behavior for string dtypes more carefully
string_kinds = {"O", "S", "U"}
assert expected_dtype == actual_dtype or (
expected_dtype.kind in string_kinds
and actual_dtype.kind in string_kinds
)
def test_roundtrip_test_data(self) -> None:
expected = create_test_data()
with self.roundtrip(expected) as actual:
self.check_dtypes_roundtripped(expected, actual)
assert_identical(expected, actual)
def test_load(self) -> None:
expected = create_test_data()
@contextlib.contextmanager
def assert_loads(vars=None):
if vars is None:
vars = expected
with self.roundtrip(expected) as actual:
for k, v in actual.variables.items():
# IndexVariables are eagerly loaded into memory
assert v._in_memory == (k in actual.dims)
yield actual
for k, v in actual.variables.items():
if k in vars:
assert v._in_memory
assert_identical(expected, actual)
with pytest.raises(AssertionError):
# make sure the contextmanager works!
with assert_loads() as ds:
pass
with assert_loads() as ds:
ds.load()
with assert_loads(["var1", "dim1", "dim2"]) as ds:
ds["var1"].load()
# verify we can read data even after closing the file
with self.roundtrip(expected) as ds:
actual = ds.load()
assert_identical(expected, actual)
def test_dataset_compute(self) -> None:
expected = create_test_data()
with self.roundtrip(expected) as actual:
# Test Dataset.compute()
for k, v in actual.variables.items():
# IndexVariables are eagerly cached
assert v._in_memory == (k in actual.dims)
computed = actual.compute()
for k, v in actual.variables.items():
assert v._in_memory == (k in actual.dims)
for v in computed.variables.values():
assert v._in_memory
assert_identical(expected, actual)
assert_identical(expected, computed)
def test_pickle(self) -> None:
expected = Dataset({"foo": ("x", [42])})
with self.roundtrip(expected, allow_cleanup_failure=ON_WINDOWS) as roundtripped:
with roundtripped:
# Windows doesn't like reopening an already open file
raw_pickle = pickle.dumps(roundtripped)
with pickle.loads(raw_pickle) as unpickled_ds:
assert_identical(expected, unpickled_ds)
@pytest.mark.filterwarnings("ignore:deallocating CachingFileManager")
def test_pickle_dataarray(self) -> None:
expected = Dataset({"foo": ("x", [42])})
with self.roundtrip(expected, allow_cleanup_failure=ON_WINDOWS) as roundtripped:
with roundtripped:
raw_pickle = pickle.dumps(roundtripped["foo"])
# TODO: figure out how to explicitly close the file for the
# unpickled DataArray?
unpickled = pickle.loads(raw_pickle)
assert_identical(expected["foo"], unpickled)
def test_dataset_caching(self) -> None:
expected = Dataset({"foo": ("x", [5, 6, 7])})
with self.roundtrip(expected) as actual:
assert isinstance(actual.foo.variable._data, indexing.MemoryCachedArray)
assert not actual.foo.variable._in_memory
_ = actual.foo.values # cache
assert actual.foo.variable._in_memory
with self.roundtrip(expected, open_kwargs={"cache": False}) as actual:
assert isinstance(actual.foo.variable._data, indexing.CopyOnWriteArray)
assert not actual.foo.variable._in_memory
_ = actual.foo.values # no caching
assert not actual.foo.variable._in_memory
@pytest.mark.filterwarnings("ignore:deallocating CachingFileManager")
def test_roundtrip_None_variable(self) -> None:
expected = Dataset({None: (("x", "y"), [[0, 1], [2, 3]])})
with self.roundtrip(expected) as actual:
assert_identical(expected, actual)
def test_roundtrip_object_dtype(self) -> None:
floats = np.array([0.0, 0.0, 1.0, 2.0, 3.0], dtype=object)
floats_nans = np.array([np.nan, np.nan, 1.0, 2.0, 3.0], dtype=object)
bytes_ = np.array([b"ab", b"cdef", b"g"], dtype=object)
bytes_nans = np.array([b"ab", b"cdef", np.nan], dtype=object)
strings = np.array(["ab", "cdef", "g"], dtype=object)
strings_nans = np.array(["ab", "cdef", np.nan], dtype=object)
all_nans = np.array([np.nan, np.nan], dtype=object)
original = Dataset(
{
"floats": ("a", floats),
"floats_nans": ("a", floats_nans),
"bytes": ("b", bytes_),
"bytes_nans": ("b", bytes_nans),
"strings": ("b", strings),
"strings_nans": ("b", strings_nans),
"all_nans": ("c", all_nans),
"nan": ([], np.nan),
}
)
expected = original.copy(deep=True)
with self.roundtrip(original) as actual:
try:
assert_identical(expected, actual)
except AssertionError:
# Most stores use '' for nans in strings, but some don't.
# First try the ideal case (where the store returns exactly)
# the original Dataset), then try a more realistic case.
# This currently includes all netCDF files when encoding is not
# explicitly set.
# https://github.com/pydata/xarray/issues/1647
# Also Zarr
expected["bytes_nans"][-1] = b""
expected["strings_nans"][-1] = ""
assert_identical(expected, actual)
def test_roundtrip_string_data(self) -> None:
expected = Dataset({"x": ("t", ["ab", "cdef"])})
with self.roundtrip(expected) as actual:
assert_identical(expected, actual)
def test_roundtrip_string_encoded_characters(self) -> None:
expected = Dataset({"x": ("t", ["ab", "cdef"])})
expected["x"].encoding["dtype"] = "S1"
with self.roundtrip(expected) as actual:
assert_identical(expected, actual)
assert actual["x"].encoding["_Encoding"] == "utf-8"
expected["x"].encoding["_Encoding"] = "ascii"
with self.roundtrip(expected) as actual:
assert_identical(expected, actual)
assert actual["x"].encoding["_Encoding"] == "ascii"
def test_roundtrip_numpy_datetime_data(self) -> None:
times = pd.to_datetime(["2000-01-01", "2000-01-02", "NaT"], unit="ns")
expected = Dataset({"t": ("t", times), "t0": times[0]})
kwargs = {"encoding": {"t0": {"units": "days since 1950-01-01"}}}
with self.roundtrip(expected, save_kwargs=kwargs) as actual:
assert_identical(expected, actual)
assert actual.t0.encoding["units"] == "days since 1950-01-01"
@requires_cftime
def test_roundtrip_cftime_datetime_data(self) -> None:
from xarray.tests.test_coding_times import _all_cftime_date_types
date_types = _all_cftime_date_types()
for date_type in date_types.values():
times = [date_type(1, 1, 1), date_type(1, 1, 2)]
expected = Dataset({"t": ("t", times), "t0": times[0]})
kwargs = {"encoding": {"t0": {"units": "days since 0001-01-01"}}}
expected_decoded_t = np.array(times)
expected_decoded_t0 = np.array([date_type(1, 1, 1)])
expected_calendar = times[0].calendar
with warnings.catch_warnings():
if expected_calendar in {"proleptic_gregorian", "standard"}:
warnings.filterwarnings("ignore", "Unable to decode time axis")
with self.roundtrip(expected, save_kwargs=kwargs) as actual:
abs_diff = abs(actual.t.values - expected_decoded_t)
assert (abs_diff <= np.timedelta64(1, "s")).all()
assert (
actual.t.encoding["units"]
== "days since 0001-01-01 00:00:00.000000"
)
assert actual.t.encoding["calendar"] == expected_calendar
abs_diff = abs(actual.t0.values - expected_decoded_t0)
assert (abs_diff <= np.timedelta64(1, "s")).all()
assert actual.t0.encoding["units"] == "days since 0001-01-01"
assert actual.t.encoding["calendar"] == expected_calendar
def test_roundtrip_timedelta_data(self) -> None:
time_deltas = pd.to_timedelta(["1h", "2h", "NaT"]) # type: ignore[arg-type, unused-ignore]
expected = Dataset({"td": ("td", time_deltas), "td0": time_deltas[0]})
with self.roundtrip(expected) as actual:
assert_identical(expected, actual)
def test_roundtrip_float64_data(self) -> None:
expected = Dataset({"x": ("y", np.array([1.0, 2.0, np.pi], dtype="float64"))})
with self.roundtrip(expected) as actual:
assert_identical(expected, actual)
@requires_netcdf
def test_roundtrip_example_1_netcdf(self) -> None:
with open_example_dataset("example_1.nc") as expected:
with self.roundtrip(expected) as actual:
# we allow the attributes to differ since that
# will depend on the encoding used. For example,
# without CF encoding 'actual' will end up with
# a dtype attribute.
assert_equal(expected, actual)
def test_roundtrip_coordinates(self) -> None:
original = Dataset(
{"foo": ("x", [0, 1])}, {"x": [2, 3], "y": ("a", [42]), "z": ("x", [4, 5])}
)
with self.roundtrip(original) as actual:
assert_identical(original, actual)
original["foo"].encoding["coordinates"] = "y"
with self.roundtrip(original, open_kwargs={"decode_coords": False}) as expected:
# check roundtripping when decode_coords=False
with self.roundtrip(
expected, open_kwargs={"decode_coords": False}
) as actual:
assert_identical(expected, actual)
def test_roundtrip_global_coordinates(self) -> None:
original = Dataset(
{"foo": ("x", [0, 1])}, {"x": [2, 3], "y": ("a", [42]), "z": ("x", [4, 5])}
)
with self.roundtrip(original) as actual:
assert_identical(original, actual)
# test that global "coordinates" is as expected
_, attrs = encode_dataset_coordinates(original)
assert attrs["coordinates"] == "y"
# test warning when global "coordinates" is already set
original.attrs["coordinates"] = "foo"
with pytest.warns(SerializationWarning):
_, attrs = encode_dataset_coordinates(original)
assert attrs["coordinates"] == "foo"
def test_roundtrip_coordinates_with_space(self) -> None:
original = Dataset(coords={"x": 0, "y z": 1})
expected = Dataset({"y z": 1}, {"x": 0})
with pytest.warns(SerializationWarning):
with self.roundtrip(original) as actual:
assert_identical(expected, actual)
def test_roundtrip_boolean_dtype(self) -> None:
original = create_boolean_data()
assert original["x"].dtype == "bool"
with self.roundtrip(original) as actual:
assert_identical(original, actual)
assert actual["x"].dtype == "bool"
# this checks for preserving dtype during second roundtrip
# see https://github.com/pydata/xarray/issues/7652#issuecomment-1476956975
with self.roundtrip(actual) as actual2:
assert_identical(original, actual2)
assert actual2["x"].dtype == "bool"
def test_orthogonal_indexing(self) -> None:
in_memory = create_test_data()
with self.roundtrip(in_memory) as on_disk:
indexers = {"dim1": [1, 2, 0], "dim2": [3, 2, 0, 3], "dim3": np.arange(5)}
expected = in_memory.isel(indexers)
actual = on_disk.isel(**indexers)
# make sure the array is not yet loaded into memory
assert not actual["var1"].variable._in_memory
assert_identical(expected, actual)
# do it twice, to make sure we're switched from orthogonal -> numpy
# when we cached the values
actual = on_disk.isel(**indexers)
assert_identical(expected, actual)
def test_vectorized_indexing(self) -> None:
in_memory = create_test_data()
with self.roundtrip(in_memory) as on_disk:
indexers = {
"dim1": DataArray([0, 2, 0], dims="a"),
"dim2": DataArray([0, 2, 3], dims="a"),
}
expected = in_memory.isel(indexers)
actual = on_disk.isel(**indexers)
# make sure the array is not yet loaded into memory
assert not actual["var1"].variable._in_memory
assert_identical(expected, actual.load())
# do it twice, to make sure we're switched from
# vectorized -> numpy when we cached the values
actual = on_disk.isel(**indexers)
assert_identical(expected, actual)
def multiple_indexing(indexers):
# make sure a sequence of lazy indexings certainly works.
with self.roundtrip(in_memory) as on_disk:
actual = on_disk["var3"]
expected = in_memory["var3"]
for ind in indexers:
actual = actual.isel(ind)
expected = expected.isel(ind)
# make sure the array is not yet loaded into memory
assert not actual.variable._in_memory
assert_identical(expected, actual.load())
# two-staged vectorized-indexing
indexers2 = [
{
"dim1": DataArray([[0, 7], [2, 6], [3, 5]], dims=["a", "b"]),
"dim3": DataArray([[0, 4], [1, 3], [2, 2]], dims=["a", "b"]),
},
{"a": DataArray([0, 1], dims=["c"]), "b": DataArray([0, 1], dims=["c"])},
]
multiple_indexing(indexers2)
# vectorized-slice mixed
indexers3 = [
{
"dim1": DataArray([[0, 7], [2, 6], [3, 5]], dims=["a", "b"]),
"dim3": slice(None, 10),
}
]
multiple_indexing(indexers3)
# vectorized-integer mixed
indexers4 = [
{"dim3": 0},
{"dim1": DataArray([[0, 7], [2, 6], [3, 5]], dims=["a", "b"])},
{"a": slice(None, None, 2)},
]
multiple_indexing(indexers4)
# vectorized-integer mixed
indexers5 = [
{"dim3": 0},
{"dim1": DataArray([[0, 7], [2, 6], [3, 5]], dims=["a", "b"])},
{"a": 1, "b": 0},
]
multiple_indexing(indexers5)
def test_vectorized_indexing_negative_step(self) -> None:
# use dask explicitly when present
open_kwargs: dict[str, Any] | None
if has_dask:
open_kwargs = {"chunks": {}}
else:
open_kwargs = None
in_memory = create_test_data()
def multiple_indexing(indexers):
# make sure a sequence of lazy indexings certainly works.
with self.roundtrip(in_memory, open_kwargs=open_kwargs) as on_disk:
actual = on_disk["var3"]
expected = in_memory["var3"]
for ind in indexers:
actual = actual.isel(ind)
expected = expected.isel(ind)
# make sure the array is not yet loaded into memory
assert not actual.variable._in_memory
assert_identical(expected, actual.load())
# with negative step slice.
indexers = [
{
"dim1": DataArray([[0, 7], [2, 6], [3, 5]], dims=["a", "b"]),
"dim3": slice(-1, 1, -1),
}
]
multiple_indexing(indexers)
# with negative step slice.
indexers = [
{
"dim1": DataArray([[0, 7], [2, 6], [3, 5]], dims=["a", "b"]),
"dim3": slice(-1, 1, -2),
}
]
multiple_indexing(indexers)
def test_outer_indexing_reversed(self) -> None:
# regression test for GH6560
ds = xr.Dataset(
{"z": (("t", "p", "y", "x"), np.ones((1, 1, 31, 40)))},
)
with self.roundtrip(ds) as on_disk:
subset = on_disk.isel(t=[0], p=0).z[:, ::10, ::10][:, ::-1, :]
assert subset.sizes == subset.load().sizes
def test_isel_dataarray(self) -> None:
# Make sure isel works lazily. GH:issue:1688
in_memory = create_test_data()
with self.roundtrip(in_memory) as on_disk:
expected = in_memory.isel(dim2=in_memory["dim2"] < 3)
actual = on_disk.isel(dim2=on_disk["dim2"] < 3)
assert_identical(expected, actual)
def validate_array_type(self, ds):
# Make sure that only NumpyIndexingAdapter stores a bare np.ndarray.
def find_and_validate_array(obj):
# recursively called function. obj: array or array wrapper.
if hasattr(obj, "array"):
if isinstance(obj.array, indexing.ExplicitlyIndexed):
find_and_validate_array(obj.array)
else:
if isinstance(obj.array, np.ndarray):
assert isinstance(obj, indexing.NumpyIndexingAdapter)
elif isinstance(obj.array, dask_array_type):
assert isinstance(obj, indexing.DaskIndexingAdapter)
elif isinstance(obj.array, pd.Index):
assert isinstance(obj, indexing.PandasIndexingAdapter)
else:
raise TypeError(f"{type(obj.array)} is wrapped by {type(obj)}")
for v in ds.variables.values():
find_and_validate_array(v._data)
def test_array_type_after_indexing(self) -> None:
in_memory = create_test_data()
with self.roundtrip(in_memory) as on_disk:
self.validate_array_type(on_disk)
indexers = {"dim1": [1, 2, 0], "dim2": [3, 2, 0, 3], "dim3": np.arange(5)}
expected = in_memory.isel(indexers)
actual = on_disk.isel(**indexers)
assert_identical(expected, actual)
self.validate_array_type(actual)
# do it twice, to make sure we're switched from orthogonal -> numpy
# when we cached the values
actual = on_disk.isel(**indexers)
assert_identical(expected, actual)
self.validate_array_type(actual)
def test_dropna(self) -> None:
# regression test for GH:issue:1694
a = np.random.randn(4, 3)
a[1, 1] = np.nan
in_memory = xr.Dataset(
{"a": (("y", "x"), a)}, coords={"y": np.arange(4), "x": np.arange(3)}
)
assert_identical(
in_memory.dropna(dim="x"), in_memory.isel(x=slice(None, None, 2))
)
with self.roundtrip(in_memory) as on_disk:
self.validate_array_type(on_disk)
expected = in_memory.dropna(dim="x")
actual = on_disk.dropna(dim="x")
assert_identical(expected, actual)
def test_ondisk_after_print(self) -> None:
"""Make sure print does not load file into memory"""
in_memory = create_test_data()
with self.roundtrip(in_memory) as on_disk:
repr(on_disk)
assert not on_disk["var1"]._in_memory
class CFEncodedBase(DatasetIOBase):
def test_roundtrip_bytes_with_fill_value(self) -> None:
values = np.array([b"ab", b"cdef", np.nan], dtype=object)
encoding = {"_FillValue": b"X", "dtype": "S1"}
original = Dataset({"x": ("t", values, {}, encoding)})
expected = original.copy(deep=True)
with self.roundtrip(original) as actual:
assert_identical(expected, actual)
original = Dataset({"x": ("t", values, {}, {"_FillValue": b""})})
with self.roundtrip(original) as actual:
assert_identical(expected, actual)
def test_roundtrip_string_with_fill_value_nchar(self) -> None:
values = np.array(["ab", "cdef", np.nan], dtype=object)
expected = Dataset({"x": ("t", values)})
encoding = {"dtype": "S1", "_FillValue": b"X"}
original = Dataset({"x": ("t", values, {}, encoding)})
# Not supported yet.
with pytest.raises(NotImplementedError):
with self.roundtrip(original) as actual:
assert_identical(expected, actual)
def test_roundtrip_empty_vlen_string_array(self) -> None:
# checks preserving vlen dtype for empty arrays GH7862
dtype = create_vlen_dtype(str)
original = Dataset({"a": np.array([], dtype=dtype)})
assert check_vlen_dtype(original["a"].dtype) is str
with self.roundtrip(original) as actual:
assert_identical(original, actual)
if np.issubdtype(actual["a"].dtype, object):
# only check metadata for capable backends
# eg. NETCDF3 based backends do not roundtrip metadata
if actual["a"].dtype.metadata is not None:
assert check_vlen_dtype(actual["a"].dtype) is str
else:
# zarr v3 sends back "<U1"
assert np.issubdtype(actual["a"].dtype, np.dtype("=U1"))
@pytest.mark.parametrize(
"decoded_fn, encoded_fn",
[
(
create_unsigned_masked_scaled_data,
create_encoded_unsigned_masked_scaled_data,
),
pytest.param(
create_bad_unsigned_masked_scaled_data,
create_bad_encoded_unsigned_masked_scaled_data,
marks=pytest.mark.xfail(reason="Bad _Unsigned attribute."),
),
(
create_signed_masked_scaled_data,
create_encoded_signed_masked_scaled_data,
),
(
create_unsigned_false_masked_scaled_data,
create_encoded_unsigned_false_masked_scaled_data,
),
(create_masked_and_scaled_data, create_encoded_masked_and_scaled_data),
],
)
@pytest.mark.parametrize("dtype", [np.dtype("float64"), np.dtype("float32")])
def test_roundtrip_mask_and_scale(self, decoded_fn, encoded_fn, dtype) -> None:
if hasattr(self, "zarr_version") and dtype == np.float32:
pytest.skip("float32 will be treated as float64 in zarr")
decoded = decoded_fn(dtype)
encoded = encoded_fn(dtype)
if decoded["x"].encoding["dtype"] == "u1" and not (
(self.engine == "netcdf4" and self.file_format is None)
or self.file_format == "NETCDF4"
):
pytest.skip("uint8 data can't be written to non-NetCDF4 data")
with self.roundtrip(decoded) as actual:
for k in decoded.variables:
assert decoded.variables[k].dtype == actual.variables[k].dtype
# CF _FillValue is always on-disk type
assert (
decoded.variables[k].encoding["_FillValue"]
== actual.variables[k].encoding["_FillValue"]
)
assert_allclose(decoded, actual, decode_bytes=False)
with self.roundtrip(decoded, open_kwargs=dict(decode_cf=False)) as actual:
# TODO: this assumes that all roundtrips will first
# encode. Is that something we want to test for?
for k in encoded.variables:
assert encoded.variables[k].dtype == actual.variables[k].dtype
# CF _FillValue is always on-disk type
assert (
decoded.variables[k].encoding["_FillValue"]
== actual.variables[k].attrs["_FillValue"]
)
assert_allclose(encoded, actual, decode_bytes=False)
with self.roundtrip(encoded, open_kwargs=dict(decode_cf=False)) as actual:
for k in encoded.variables:
assert encoded.variables[k].dtype == actual.variables[k].dtype
# CF _FillValue is always on-disk type
assert (