|
| 1 | +from __future__ import annotations |
| 2 | + |
| 3 | +from unittest.mock import Mock, patch |
| 4 | + |
| 5 | +import numpy as np |
| 6 | +import pandas as pd |
| 7 | +import pytest |
| 8 | +from cvxpy.settings import INFEASIBLE, SOLVER_ERROR, UNBOUNDED |
| 9 | +from pandas.testing import assert_frame_equal |
| 10 | + |
| 11 | +from ir_amplitude_detuning.detuning.calculations import ( |
| 12 | + FIELDS, |
| 13 | + IP, |
| 14 | + Method, |
| 15 | + calc_effective_detuning, |
| 16 | + calculate_correction, |
| 17 | +) |
| 18 | +from ir_amplitude_detuning.detuning.equation_system import DetuningCorrectionEquationSystem |
| 19 | +from ir_amplitude_detuning.detuning.measurements import ( |
| 20 | + FirstOrderTerm, |
| 21 | + MeasureValue, |
| 22 | + SecondOrderTerm, |
| 23 | +) |
| 24 | +from ir_amplitude_detuning.utilities.correctors import Corrector, FieldComponent |
| 25 | + |
| 26 | +# ============================================================================ |
| 27 | +# Tests for Method Enum |
| 28 | +# ============================================================================ |
| 29 | + |
| 30 | +class TestMethodEnum: |
| 31 | + """Test cases for the Method enum.""" |
| 32 | + |
| 33 | + def test_method_enum_values(self): |
| 34 | + """Test that all method values are correct.""" |
| 35 | + assert Method.auto == "auto" |
| 36 | + assert Method.cvxpy == "cvxpy" |
| 37 | + assert Method.numpy == "numpy" |
| 38 | + |
| 39 | + def test_method_in_enum(self): |
| 40 | + """Test that all methods are recognized by the enum.""" |
| 41 | + # check if all values are in the enum (`list` only necessary until py3.12) |
| 42 | + assert "auto" in list(Method) |
| 43 | + assert "cvxpy" in list(Method) |
| 44 | + assert "numpy" in list(Method) |
| 45 | + |
| 46 | + # similarly, creating instances should also work: |
| 47 | + assert Method("auto") == Method.auto |
| 48 | + assert Method("cvxpy") == Method.cvxpy |
| 49 | + assert Method("numpy") == Method.numpy |
| 50 | + |
| 51 | + def test_method_not_in_enum(self): |
| 52 | + """Test that unknown methods raise ValueError.""" |
| 53 | + with pytest.raises(ValueError): |
| 54 | + Method("invalid") |
| 55 | + |
| 56 | + |
| 57 | +# ============================================================================ |
| 58 | +# Tests for calculate_correction |
| 59 | +# ============================================================================ |
| 60 | + |
| 61 | +class TestCalculateCorrection: |
| 62 | + """Test cases for the calculate_correction function.""" |
| 63 | + |
| 64 | + def test_calculate_correction_invalid_method(self): |
| 65 | + """Test that invalid method raises ValueError.""" |
| 66 | + mock_target = Mock() |
| 67 | + |
| 68 | + with pytest.raises(ValueError): |
| 69 | + calculate_correction(mock_target, method="invalid") |
| 70 | + |
| 71 | + @pytest.mark.parametrize("method", [Method.auto, Method.numpy, Method.cvxpy]) |
| 72 | + @patch('ir_amplitude_detuning.detuning.calculations.build_detuning_correction_matrix') |
| 73 | + def test_calculate_correction_exact_no_constraints(self, mock_build_matrix, method): |
| 74 | + """Test calculate_correction with auto method and no constraints.""" |
| 75 | + # Very simple eqation system: |
| 76 | + matrix = [[1, 1], [1, -1]] # inverse is matrix/2 |
| 77 | + values = [MeasureValue(3, 0.2), MeasureValue(1, 0.1)] |
| 78 | + expected_values = {"a": 2, "b": 1} |
| 79 | + expected_error = np.sqrt(np.mean([v.error**2 for v in values])/2) |
| 80 | + |
| 81 | + # Mock equation system building --- |
| 82 | + mock_eqsys = DetuningCorrectionEquationSystem( |
| 83 | + m = pd.DataFrame(matrix, columns=expected_values.keys()), |
| 84 | + v = pd.Series([v.value for v in values]), |
| 85 | + m_constr = pd.DataFrame(), |
| 86 | + v_constr = pd.Series(dtype=float), |
| 87 | + v_meas = pd.Series(values), |
| 88 | + ) |
| 89 | + |
| 90 | + mock_build_matrix.return_value = mock_eqsys |
| 91 | + mock_target = Mock() |
| 92 | + |
| 93 | + # Run the calculation --- |
| 94 | + result = calculate_correction(mock_target, method=method) |
| 95 | + |
| 96 | + # Check the results --- |
| 97 | + assert mock_build_matrix.called_with(mock_target) |
| 98 | + assert isinstance(result, pd.Series) |
| 99 | + assert len(result) == 2 |
| 100 | + |
| 101 | + if method in (Method.numpy, Method.auto): |
| 102 | + assert result["a"].value == pytest.approx(expected_values["a"]) |
| 103 | + assert result["b"].value == pytest.approx(expected_values["b"]) |
| 104 | + assert result["a"].error == pytest.approx(result["b"].error) == pytest.approx(expected_error) |
| 105 | + else: |
| 106 | + assert result["a"] == pytest.approx(expected_values["a"]) |
| 107 | + assert result["b"] == pytest.approx(expected_values["b"]) |
| 108 | + |
| 109 | + with pytest.raises(AttributeError): |
| 110 | + result["a"].value |
| 111 | + |
| 112 | + with pytest.raises(AttributeError): |
| 113 | + result["b"].value |
| 114 | + |
| 115 | + def _get_equation_system_to_optimize(self) -> tuple[list[MeasureValue], list[list[int]], float]: |
| 116 | + """Simple, not exact solvable Eqs for the next tests.""" |
| 117 | + values = [MeasureValue(3, 0.2), MeasureValue(5, 0.1)] |
| 118 | + matrix = [[1, 1], [2, 2]] |
| 119 | + expected = 1.3 # optimal value without constraints |
| 120 | + return values, matrix, expected |
| 121 | + |
| 122 | + @patch('ir_amplitude_detuning.detuning.calculations.build_detuning_correction_matrix') |
| 123 | + def test_calculate_correction_optimize_no_constraints(self, mock_build_matrix): |
| 124 | + """Test calculate_correction with auto method and no constraints.""" |
| 125 | + # Prepare --- |
| 126 | + values, matrix, expected = self._get_equation_system_to_optimize() |
| 127 | + mock_eqsys = DetuningCorrectionEquationSystem( |
| 128 | + m = pd.DataFrame(matrix, columns=["a", "b"]), |
| 129 | + v = pd.Series([v.value for v in values]), |
| 130 | + m_constr = pd.DataFrame(), |
| 131 | + v_constr = pd.Series(dtype=float), |
| 132 | + v_meas = pd.Series(values), |
| 133 | + ) |
| 134 | + mock_build_matrix.return_value = mock_eqsys |
| 135 | + |
| 136 | + # Run --- |
| 137 | + result_numpy = calculate_correction(Mock(), method=Method.auto) |
| 138 | + |
| 139 | + # Check --- |
| 140 | + assert result_numpy["a"].value == pytest.approx(expected) |
| 141 | + assert result_numpy["b"].value == pytest.approx(expected) |
| 142 | + assert result_numpy["a"].error > 0 |
| 143 | + assert result_numpy["b"].error > 0 |
| 144 | + |
| 145 | + @patch('ir_amplitude_detuning.detuning.calculations.build_detuning_correction_matrix') |
| 146 | + def test_calculate_correction_optimize_with_wide_constraints(self, mock_build_matrix): |
| 147 | + """Test calculate_correction with auto method and constraints that don't really matter.""" |
| 148 | + # Prepare --- |
| 149 | + values, matrix, expected = self._get_equation_system_to_optimize() |
| 150 | + mock_eqsys = DetuningCorrectionEquationSystem( |
| 151 | + m = pd.DataFrame(matrix, columns=["a", "b"]), |
| 152 | + v = pd.Series([v.value for v in values]), |
| 153 | + m_constr = pd.DataFrame([[1, 1]]), # sum of variables |
| 154 | + v_constr = pd.Series([3]), # to be smaller than 3 |
| 155 | + v_meas = pd.Series(values), |
| 156 | + ) |
| 157 | + mock_build_matrix.return_value = mock_eqsys |
| 158 | + |
| 159 | + # Run --- |
| 160 | + result_cvxpy = calculate_correction(Mock(), method=Method.auto) |
| 161 | + |
| 162 | + # Check --- |
| 163 | + assert result_cvxpy["a"] == pytest.approx(expected) |
| 164 | + assert result_cvxpy["b"] == pytest.approx(expected) |
| 165 | + |
| 166 | + @patch('ir_amplitude_detuning.detuning.calculations.build_detuning_correction_matrix') |
| 167 | + def test_calculate_correction_optimize_with_constraints(self, mock_build_matrix): |
| 168 | + """Test calculate_correction with auto method and constraints.""" |
| 169 | + # Prepare --- |
| 170 | + values, matrix, expected = self._get_equation_system_to_optimize() |
| 171 | + mock_eqsys = DetuningCorrectionEquationSystem( |
| 172 | + m = pd.DataFrame(matrix, columns=["a", "b"]), |
| 173 | + v = pd.Series([v.value for v in values]), |
| 174 | + m_constr = pd.DataFrame([[-1, -1]]), # sum of variables |
| 175 | + v_constr = pd.Series([-3]), # to be larger than 3 |
| 176 | + v_meas = pd.Series(values), |
| 177 | + ) |
| 178 | + mock_build_matrix.return_value = mock_eqsys |
| 179 | + |
| 180 | + # Run --- |
| 181 | + result_cvxpy = calculate_correction(Mock(), method=Method.auto) |
| 182 | + |
| 183 | + # Check --- |
| 184 | + assert np.sum(result_cvxpy) == pytest.approx(3) # should optimize to 1.5, 1.5 |
| 185 | + |
| 186 | + |
| 187 | + @patch('ir_amplitude_detuning.detuning.calculations.build_detuning_correction_matrix') |
| 188 | + @patch('ir_amplitude_detuning.detuning.calculations.cvx.Problem') |
| 189 | + def test_cvxpy_fails(self, mock_problem_class, mock_build_matrix): |
| 190 | + """Test calculate_correction with cvxpy method.""" |
| 191 | + # Setup mocks |
| 192 | + mock_eqsys = Mock() |
| 193 | + mock_eqsys.m = pd.DataFrame([[1, 2], [3, 4]], columns=['a', 'b']) |
| 194 | + mock_eqsys.v = pd.Series([5, 6]) |
| 195 | + mock_eqsys.m_constr = pd.DataFrame() |
| 196 | + mock_eqsys.v_constr = pd.Series(dtype=float) |
| 197 | + mock_eqsys.v_meas = pd.Series([5, 6]) |
| 198 | + |
| 199 | + mock_build_matrix.return_value = mock_eqsys |
| 200 | + |
| 201 | + # Mock cvxpy solver |
| 202 | + for error_status in (INFEASIBLE, UNBOUNDED, SOLVER_ERROR): |
| 203 | + mock_prob = Mock() |
| 204 | + mock_problem_class.return_value = mock_prob |
| 205 | + mock_prob.status = error_status |
| 206 | + mock_prob.solve.return_value = None |
| 207 | + |
| 208 | + with pytest.raises(ValueError) as e: |
| 209 | + calculate_correction(Mock(), method=Method.cvxpy) |
| 210 | + |
| 211 | + assert "failed" in str(e) |
| 212 | + assert error_status in str(e) |
| 213 | + |
| 214 | + # Check that cvxpy solver was used |
| 215 | + mock_prob.solve.assert_called_once() |
| 216 | + |
| 217 | + |
| 218 | +# ============================================================================ |
| 219 | +# Tests for calc_effective_detuning |
| 220 | +# ============================================================================ |
| 221 | + |
| 222 | +class TestCalcEffectiveDetuning: |
| 223 | + """Test cases for the calc_effective_detuning function.""" |
| 224 | + |
| 225 | + def test_calc_effective_detuning_empty_optics(self): |
| 226 | + """Test with empty optics dictionary.""" |
| 227 | + result = calc_effective_detuning({}, pd.Series(dtype=float)) |
| 228 | + |
| 229 | + # Returns empty dict with no beams |
| 230 | + assert isinstance(result, dict) |
| 231 | + assert len(result) == 0 |
| 232 | + |
| 233 | + @patch("ir_amplitude_detuning.detuning.calculations.calculate_matrix_row") |
| 234 | + def test_calc_effective_detuning(self, mock_calculate_matrix_row): |
| 235 | + """Test with single beam.""" |
| 236 | + # Prepare fake data --- |
| 237 | + # Create correctors with different IPs and fields |
| 238 | + correctors = [ |
| 239 | + Corrector( |
| 240 | + field=field, |
| 241 | + length=0.5, |
| 242 | + magnet=f"{type_}ip{ip or 0}{field}", |
| 243 | + circuit=f"k{type_}ip{ip or 0}{field}", |
| 244 | + ip=ip, |
| 245 | + ) |
| 246 | + for type_, field, ip in ( |
| 247 | + ("c1", FieldComponent.b4, 1), |
| 248 | + ("c2", FieldComponent.b4, 1), |
| 249 | + ("c1", FieldComponent.b5, 1), |
| 250 | + ("c1", FieldComponent.b6, 1), |
| 251 | + ("c2", FieldComponent.b6, 1), |
| 252 | + ("c1", FieldComponent.b6, 2), |
| 253 | + ("c2", FieldComponent.b6, 2), |
| 254 | + ("c2", FieldComponent.b4, None), |
| 255 | + ) |
| 256 | + ] |
| 257 | + all_terms = list(FirstOrderTerm) + list(SecondOrderTerm) |
| 258 | + values = pd.Series(np.arange(len(correctors)), index=correctors) |
| 259 | + |
| 260 | + # Create mocks |
| 261 | + mock_optics = {1: Mock(), 2: Mock()} |
| 262 | + def mocked_calulation(beam, optics, correctors, term): |
| 263 | + assert optics == mock_optics[beam] # already some checks |
| 264 | + assert term in all_terms |
| 265 | + return np.ones([1, len(correctors)]) * (all_terms.index(term) + 1) * beam |
| 266 | + |
| 267 | + mock_calculate_matrix_row.side_effect = mocked_calulation |
| 268 | + |
| 269 | + |
| 270 | + # Test the function --- |
| 271 | + result = calc_effective_detuning(mock_optics, values) |
| 272 | + |
| 273 | + # Check the result --- |
| 274 | + assert isinstance(result, dict) |
| 275 | + |
| 276 | + # n calls = n_terms * (n_ips + 1) * (n_fields + 1) * n_beams |
| 277 | + assert mock_calculate_matrix_row.call_count == len(all_terms) * 3 * 4 * 2 |
| 278 | + |
| 279 | + # Check that result 2 is the same as 1 but multiplied by 2 (beam in mock calculation) |
| 280 | + df_mul = result[1].copy() |
| 281 | + df_mul.loc[:, all_terms] = df_mul.loc[:, all_terms] * 2 |
| 282 | + assert_frame_equal(df_mul, result[2]) |
| 283 | + |
| 284 | + # Test grouping by fields and ips |
| 285 | + def filter_correctors(field, ip): |
| 286 | + return list(filter(lambda c: (c.field in field) and (c.ip is None or str(c.ip) in ip), correctors)) |
| 287 | + |
| 288 | + for field in ("b4", "b5", "b6", "b4b5b6"): |
| 289 | + df_field = result[1].loc[result[1][FIELDS] == field, :] |
| 290 | + for ip in ("1", "2", "12"): |
| 291 | + df_field_ip = df_field.loc[df_field[IP] == ip, :] |
| 292 | + value = df_field_ip[all_terms[0]].iloc[0] |
| 293 | + assert len(df_field_ip) == 1 |
| 294 | + assert all(df_field_ip[all_terms] == value * np.arange(1, len(all_terms) + 1)) # because of mock return |
| 295 | + contributing_correctors = filter_correctors(field=field, ip=ip) |
| 296 | + assert value == sum(values.loc[contributing_correctors]) # because mock return for first term is (1,1,1..) |
0 commit comments