Skip to content

Qustion about Pre-trained model generation #3

@xfy9

Description

@xfy9

Sorry to ask this question.
I follow the steps of the readme,run the pretraining/loader.py to generate .pt file, and I run the pretraining/run_pretraning.sh to generate .pt model file, and I rename the lateset .pt file to MolGNet.pt, but when I run property/finetune.py, the process report the load MolGNet.pt error, this is the error:
Traceback (most recent call last): File "property/finetune.py", line 300, in <module> main() File "property/finetune.py", line 224, in main model.from_pretrained(args.input_model_file) File "/home/zsw/zamao_pycode/MPG-main/property/model.py", line 278, in from_pretrained self.gnn.load_state_dict(torch.load(model_file)) File "/home/zsw/anaconda3/envs/zamao1/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1483, in load_state_dict self.__class__.__name__, "\n\t".join(error_msgs))) RuntimeError: Error(s) in loading state_dict for MolGNet: Missing key(s) in state_dict: "x_embedding.weight", "x_seg_embed.weight", "edge_embedding.weight", "edge_seg_embed.weight", "gnns.0.attention.query.weight", "gnns.0.attention.query.bias", "gnns.0.attention.key.weight", "gnns.0.attention.key.bias", "gnns.0.attention.value.weight", "gnns.0.attention.value.bias", "gnns.0.att_out.dense.weight", "gnns.0.att_out.dense.bias", "gnns.0.att_out.LayerNorm.weight", "gnns.0.att_out.LayerNorm.bias", "gnns.0.intermediate.dense_act.weight", "gnns.0.intermediate.dense_act.bias", "gnns.0.output.dense.weight", "gnns.0.output.dense.bias", "gnns.0.output.LayerNorm.weight", "gnns.0.output.LayerNorm.bias", "gnns.0.gru.weight_ih_l0", "gnns.0.gru.weight_hh_l0", "gnns.0.gru.bias_ih_l0", "gnns.0.gru.bias_hh_l0", "gnns.0.LayerNorm.weight", "gnns.0.LayerNorm.bias", "gnns.1.attention.query.weight", "gnns.1.attention.query.bias", "gnns.1.attention.key.weight", "gnns.1.attention.key.bias", "gnns.1.attention.value.weight", "gnns.1.attention.value.bias", "gnns.1.att_out.dense.weight", "gnns.1.att_out.dense.bias", "gnns.1.att_out.LayerNorm.weight", "gnns.1.att_out.LayerNorm.bias", "gnns.1.intermediate.dense_act.weight", "gnns.1.intermediate.dense_act.bias", "gnns.1.output.dense.weight", "gnns.1.output.dense.bias", "gnns.1.output.LayerNorm.weight", "gnns.1.output.LayerNorm.bias", "gnns.1.gru.weight_ih_l0", "gnns.1.gru.weight_hh_l0", "gnns.1.gru.bias_ih_l0", "gnns.1.gru.bias_hh_l0", "gnns.1.LayerNorm.weight", "gnns.1.LayerNorm.bias", "gnns.2.attention.query.weight", "gnns.2.attention.query.bias", "gnns.2.attention.key.weight", "gnns.2.attention.key.bias", "gnns.2.attention.value.weight", "gnns.2.attention.value.bias", "gnns.2.att_out.dense.weight", "gnns.2.att_out.dense.bias", "gnns.2.att_out.LayerNorm.weight", "gnns.2.att_out.LayerNorm.bias", "gnns.2.intermediate.dense_act.weight", "gnns.2.intermediate.dense_act.bias", "gnns.2.output.dense.weight", "gnns.2.output.dense.bias", "gnns.2.output.LayerNorm.weight", "gnns.2.output.LayerNorm.bias", "gnns.2.gru.weight_ih_l0", "gnns.2.gru.weight_hh_l0", "gnns.2.gru.bias_ih_l0", "gnns.2.gru.bias_hh_l0", "gnns.2.LayerNorm.weight", "gnns.2.LayerNorm.bias", "gnns.3.attention.query.weight", "gnns.3.attention.query.bias", "gnns.3.attention.key.weight", "gnns.3.attention.key.bias", "gnns.3.attention.value.weight", "gnns.3.attention.value.bias", "gnns.3.att_out.dense.weight", "gnns.3.att_out.dense.bias", "gnns.3.att_out.LayerNorm.weight", "gnns.3.att_out.LayerNorm.bias", "gnns.3.intermediate.dense_act.weight", "gnns.3.intermediate.dense_act.bias", "gnns.3.output.dense.weight", "gnns.3.output.dense.bias", "gnns.3.output.LayerNorm.weight", "gnns.3.output.LayerNorm.bias", "gnns.3.gru.weight_ih_l0", "gnns.3.gru.weight_hh_l0", "gnns.3.gru.bias_ih_l0", "gnns.3.gru.bias_hh_l0", "gnns.3.LayerNorm.weight", "gnns.3.LayerNorm.bias", "gnns.4.attention.query.weight", "gnns.4.attention.query.bias", "gnns.4.attention.key.weight", "gnns.4.attention.key.bias", "gnns.4.attention.value.weight", "gnns.4.attention.value.bias", "gnns.4.att_out.dense.weight", "gnns.4.att_out.dense.bias", "gnns.4.att_out.LayerNorm.weight", "gnns.4.att_out.LayerNorm.bias", "gnns.4.intermediate.dense_act.weight", "gnns.4.intermediate.dense_act.bias", "gnns.4.output.dense.weight", "gnns.4.output.dense.bias", "gnns.4.output.LayerNorm.weight", "gnns.4.output.LayerNorm.bias", "gnns.4.gru.weight_ih_l0", "gnns.4.gru.weight_hh_l0", "gnns.4.gru.bias_ih_l0", "gnns.4.gru.bias_hh_l0", "gnns.4.LayerNorm.weight", "gnns.4.LayerNorm.bias". Unexpected key(s) in state_dict: "model", "gnn", "linear_atom", "optimizer", "master params", "files", "epoch", "data_loader".
Am I doing something wrong? Or I miss step?
I would be very grateful if you could answer my doubts.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions