-
Notifications
You must be signed in to change notification settings - Fork 361
/
Copy pathtorch_compile_phi4.py
73 lines (59 loc) · 1.97 KB
/
torch_compile_phi4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
"""
.. _torch_compile_phi4:
Compiling Phi 4 model from Hugging Face using the Torch-TensorRT `torch.compile` Backend
======================================================
This script is intended as a sample of the Torch-TensorRT workflow with `torch.compile` on a Phi 4 model from Hugging Face.
"""
# %%
# Imports and Model Definition
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
import requests
import torch
import torch_tensorrt
from PIL import Image
from transformers import AutoModelForCausalLM, AutoProcessor
# %%
# Load the pre-trained model weights from Hugging Face
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
model_id = "microsoft/Phi-4-multimodal-instruct"
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
model = (
AutoModelForCausalLM.from_pretrained(
model_id, trust_remote_code=True, torch_dtype="auto"
)
.eval()
.cuda()
)
# %%
# Compile the model with torch.compile, using Torch-TensorRT backend
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
model.forward = torch.compile(
model.forward,
backend="tensorrt",
options={"debug": True, "min_block_size": 1, "use_python_runtime": True},
)
# %%
# Write prompt and load image
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
user_prompt = "<|user|>\n"
assistant_prompt = "<|assistant|>\n"
prompt_suffix = "<|end|>\n"
# single-image prompt
prompt = f"{user_prompt}<|image_1|>\nWhat is shown in this image?{prompt_suffix}{assistant_prompt}"
url = "https://www.ilankelman.org/stopsigns/australia.jpg"
print(f">>> Prompt\n{prompt}")
image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(prompt, image, return_tensors="pt").to("cuda:0")
# %%
# Inference
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
generate_ids = model.generate(
**inputs,
max_new_tokens=1000,
eos_token_id=processor.tokenizer.eos_token_id,
)
generate_ids = generate_ids[:, inputs["input_ids"].shape[1] :]
response = processor.batch_decode(
generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
)[0]
print(f">>> Response\n{response}")