Skip to content

🐛 [Bug] Could not implicitly convert NumPy data type: i64 to TensorRT #3295

Open
@dudeperf3ct

Description

Bug Description

TensorRT engine produces error when ran on Jetson for fcn_resnet model. However, it does not produce error when ran on desktop.

Dynamo frontend is used for creating a TensorRT engine.

Error : [TRT] [E] Could not implicitly convert NumPy data type: i64 to TensorRT.

To Reproduce

Steps to reproduce the behavior:

The following are relevant code for loading and converting to a TensorRT model.

input_data = torch.randn(args.input_shape, device=DEVICE)
model = torch.hub.load("pytorch/vision", 'fcn_resnet50', pretrained=True)
model.eval().to(DEVICE)

input_data = input_data.to(torch.float16)
model = model.to(torch.float16)

exp_program = torch.export.export(model, tuple([input_data]))
model = torch_tensorrt.dynamo.compile(
    exported_program=exp_program,
    inputs=[input_data],
    min_block_size=args.min_block_size,
    optimization_level=args.optimization_level,
    enabled_precisions={dtype},
    # Set to True for verbose output
    # NOTE: Performance Regression when rich library is available
    # https://github.com/pytorch/TensorRT/issues/3215
    debug=True,
    # Setting it to True returns PythonTorchTensorRTModule which has different profiling approach
    use_python_runtime=True,
)

for _ in range(100):
    _ = model(input)

Expected behavior

Environment

Build information about Torch-TensorRT can be found by turning on debug messages

Jetson Orion Developer Kit

  • Torch-TensorRT Version (e.g. 1.0.0): 2.4.0a0
  • PyTorch Version (e.g. 1.0):
  • CPU Architecture: aarch64
  • OS (e.g., Linux): Ubuntu 22.04
  • How you installed PyTorch (conda, pip, libtorch, source): nvcr.io/nvidia/pytorch:24.06-py3-igpu
  • Build command you used (if compiling from source):
  • Are you using local sources or building from archives: nvcr.io/nvidia/pytorch:24.06-py3-igpu
  • Python version: 3.10.12
  • CUDA version: 12.6.68
  • GPU models and configuration:
  • Any other relevant information: Jetpack 6.1 L4T 36.4.0

Additional context

Here's a screenshot for relevant comparison

Desktop:
Screenshot from 2024-11-15 12-45-05

Jetson:
Screenshot from 2024-11-15 12-45-29

Activity

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Metadata

Assignees

Labels

bugSomething isn't working

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions