|
63 | 63 | from gpytorch.priors.prior import Prior
|
64 | 64 | from gpytorch.priors.smoothed_box_prior import SmoothedBoxPrior
|
65 | 65 | from gpytorch.priors.torch_priors import GammaPrior
|
66 |
| -from gpytorch.settings import cholesky_jitter, detach_test_caches |
| 66 | +from gpytorch.settings import detach_test_caches |
67 | 67 | from gpytorch.utils.errors import CachingError
|
68 | 68 | from gpytorch.utils.memoize import cached, pop_from_cache
|
69 | 69 | from torch import Tensor
|
@@ -571,15 +571,14 @@ def posterior(
|
571 | 571 |
|
572 | 572 | # now update root so that \tilde{R}\tilde{R}' \approx K_{(x,xt), (x,xt)}
|
573 | 573 | # cloning preserves the gradient history
|
574 |
| - with cholesky_jitter(cholesky_jitter.value(X.dtype)): |
575 |
| - updated_lazy_tensor = data_data_covar.cat_rows( |
576 |
| - cross_mat=test_data_covar.clone(), |
577 |
| - new_mat=test_test_covar, |
578 |
| - method="diagonalization", |
579 |
| - ) |
580 |
| - updated_root = updated_lazy_tensor.root_decomposition().root |
581 |
| - # occasionally, there's device errors so enforce this comes out right |
582 |
| - updated_root = updated_root.to(data_data_covar.device) |
| 574 | + updated_lazy_tensor = data_data_covar.cat_rows( |
| 575 | + cross_mat=test_data_covar.clone(), |
| 576 | + new_mat=test_test_covar, |
| 577 | + method="diagonalization", |
| 578 | + ) |
| 579 | + updated_root = updated_lazy_tensor.root_decomposition().root |
| 580 | + # occasionally, there's device errors so enforce this comes out right |
| 581 | + updated_root = updated_root.to(data_data_covar.device) |
583 | 582 |
|
584 | 583 | # build a root decomposition of the joint train/test covariance matrix
|
585 | 584 | # construct (\tilde{R} \otimes M)(\tilde{R} \otimes M)' \approx
|
|
0 commit comments