-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathindex.html
928 lines (751 loc) · 45.9 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>PyTorch C++ API — PyTorch main documentation</title>
<link rel="canonical" href="https://pytorch.org/docs/stable/index.html"/>
<link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
<!-- <link rel="stylesheet" href="_static/pygments.css" type="text/css" /> -->
<link rel="stylesheet" href="_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="_static/cpp_theme.css" type="text/css" />
<link rel="stylesheet" href="_static/collapsible-lists/css/tree_view.css" type="text/css" />
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
<link rel="next" title="Installing C++ Distributions of PyTorch" href="installing.html" />
<!-- Google Tag Manager -->
<script>(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start':
new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0],
j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src=
'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f);
})(window,document,'script','dataLayer','');</script>
<!-- End Google Tag Manager -->
<script src="_static/js/modernizr.min.js"></script>
<!-- Preload the theme fonts -->
<link rel="preload" href="_static/fonts/FreightSans/freight-sans-book.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="_static/fonts/FreightSans/freight-sans-medium.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="_static/fonts/IBMPlexMono/IBMPlexMono-Medium.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="_static/fonts/FreightSans/freight-sans-bold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="_static/fonts/FreightSans/freight-sans-medium-italic.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="_static/fonts/IBMPlexMono/IBMPlexMono-SemiBold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<!-- Preload the katex fonts -->
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Math-Italic.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Main-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Main-Bold.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Size1-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Size4-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Size2-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Size3-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="preload" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/fonts/KaTeX_Caligraphic-Regular.woff2" as="font" type="font/woff2" crossorigin="anonymous">
<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.15.2/css/all.css" integrity="sha384-vSIIfh2YWi9wW0r9iZe7RJPrKwp6bG+s9QZMoITbCckVJqGCCRhc+ccxNcdpHuYu" crossorigin="anonymous">
</head>
<div class="container-fluid header-holder tutorials-header" id="header-holder">
<div class="container">
<div class="header-container">
<a class="header-logo" href="https://pytorch.org/" aria-label="PyTorch"></a>
<div class="main-menu">
<ul>
<li class="main-menu-item">
<div id="resourcesDropdownButton" data-toggle="resources-dropdown" class="resources-dropdown">
<a class="with-down-arrow">
Learn
</a>
<div class="resources-dropdown-menu">
<a class="nav-dropdown-item" href="https://pytorch.org/get-started">
<span class=dropdown-title>Get Started</span>
<p>Run PyTorch locally or get started quickly with one of the supported cloud platforms</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/tutorials">
<span class="dropdown-title">Tutorials</span>
<p>Whats new in PyTorch tutorials</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/tutorials/beginner/basics/intro.html">
<span class="dropdown-title">Learn the Basics</span>
<p>Familiarize yourself with PyTorch concepts and modules</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/tutorials/recipes/recipes_index.html">
<span class="dropdown-title">PyTorch Recipes</span>
<p>Bite-size, ready-to-deploy PyTorch code examples</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/tutorials/beginner/introyt.html">
<span class="dropdown-title">Intro to PyTorch - YouTube Series</span>
<p>Master PyTorch basics with our engaging YouTube tutorial series</p>
</a>
</div>
</div>
</li>
<li>
<div id="resourcesDropdownButton" data-toggle="resources-dropdown" class="resources-dropdown">
<a class="with-down-arrow">
Ecosystem
</a>
<div class="resources-dropdown-menu">
<a class="nav-dropdown-item" href="https://pytorch.org/ecosystem">
<span class="dropdown-title">Tools</span>
<p>Learn about the tools and frameworks in the PyTorch Ecosystem</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/#community-module">
<span class=dropdown-title>Community</span>
<p>Join the PyTorch developer community to contribute, learn, and get your questions answered</p>
</a>
<a class="nav-dropdown-item" href="https://discuss.pytorch.org/" target="_blank">
<span class=dropdown-title>Forums</span>
<p>A place to discuss PyTorch code, issues, install, research</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/resources">
<span class=dropdown-title>Developer Resources</span>
<p>Find resources and get questions answered</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/ecosystem/contributor-awards-2023">
<span class="dropdown-title">Contributor Awards - 2023</span>
<p>Award winners announced at this year's PyTorch Conference</p>
</a>
</div>
</div>
</li>
<li>
<div id="resourcesDropdownButton" data-toggle="resources-dropdown" class="resources-dropdown">
<a class="with-down-arrow">
Edge
</a>
<div class="resources-dropdown-menu">
<a class="nav-dropdown-item" href="https://pytorch.org/edge">
<span class="dropdown-title">About PyTorch Edge</span>
<p>Build innovative and privacy-aware AI experiences for edge devices</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/executorch-overview">
<span class="dropdown-title">ExecuTorch</span>
<p>End-to-end solution for enabling on-device inference capabilities across mobile and edge devices</p>
</a>
</div>
</div>
</li>
<li class="main-menu-item">
<div id="resourcesDropdownButton" data-toggle="resources-dropdown" class="resources-dropdown">
<a class="with-down-arrow">
Docs
</a>
<div class="resources-dropdown-menu">
<a class="nav-dropdown-item" href="https://pytorch.org/docs/stable/index.html">
<span class="dropdown-title">PyTorch</span>
<p>Explore the documentation for comprehensive guidance on how to use PyTorch</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/pytorch-domains">
<span class="dropdown-title">PyTorch Domains</span>
<p>Read the PyTorch Domains documentation to learn more about domain-specific libraries</p>
</a>
</div>
</div>
</li>
<li>
<div id="resourcesDropdownButton" data-toggle="resources-dropdown" class="resources-dropdown">
<a class="with-down-arrow">
Blogs & News
</a>
<div class="resources-dropdown-menu">
<a class="nav-dropdown-item" href="https://pytorch.org/blog/">
<span class="dropdown-title">PyTorch Blog</span>
<p>Catch up on the latest technical news and happenings</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/community-blog">
<span class="dropdown-title">Community Blog</span>
<p>Stories from the PyTorch ecosystem</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/videos">
<span class="dropdown-title">Videos</span>
<p>Learn about the latest PyTorch tutorials, new, and more </p>
<a class="nav-dropdown-item" href="https://pytorch.org/community-stories">
<span class="dropdown-title">Community Stories</span>
<p>Learn how our community solves real, everyday machine learning problems with PyTorch</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/events">
<span class="dropdown-title">Events</span>
<p>Find events, webinars, and podcasts</p>
</a>
</div>
</li>
<li>
<div id="resourcesDropdownButton" data-toggle="resources-dropdown" class="resources-dropdown">
<a class="with-down-arrow">
About
</a>
<div class="resources-dropdown-menu">
<a class="nav-dropdown-item" href="https://pytorch.org/foundation">
<span class="dropdown-title">PyTorch Foundation</span>
<p>Learn more about the PyTorch Foundation</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/governing-board">
<span class="dropdown-title">Governing Board</span>
<p></p>
</a>
</div>
</div>
</li>
<li class="main-menu-item">
<div class="no-dropdown">
<a href="https://pytorch.org/join" data-cta="join">
Become a Member
</a>
</div>
</li>
<li>
<div class="main-menu-item">
<a href="https://github.com/pytorch/pytorch" class="github-icon">
</a>
</div>
</li>
<!--- TODO: This block adds the search icon to the nav bar. We will enable it later.
<li>
<div class="main-menu-item">
<a href="https://github.com/pytorch/pytorch" class="search-icon">
</a>
</div>
</li>
--->
</ul>
</div>
<a class="main-menu-open-button" href="#" data-behavior="open-mobile-menu"></a>
</div>
</div>
</div>
<body class="pytorch-body">
<div class="table-of-contents-link-wrapper">
<span>Table of Contents</span>
<a href="#" class="toggle-table-of-contents" data-behavior="toggle-table-of-contents"></a>
</div>
<nav data-toggle="wy-nav-shift" class="pytorch-left-menu" id="pytorch-left-menu">
<div class="pytorch-side-scroll">
<div class="pytorch-menu pytorch-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<div class="pytorch-left-menu-search">
<div class="version">
main
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="search.html" method="get">
<input type="text" name="q" placeholder="Search Docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<ul>
<li class="toctree-l1"><a class="reference internal" href="installing.html">Installing C++ Distributions of PyTorch</a></li>
<li class="toctree-l1"><a class="reference internal" href="frontend.html">The C++ Frontend</a></li>
<li class="toctree-l1"><a class="reference internal" href="api/library_root.html">Library API</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Notes</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="notes/faq.html">FAQ</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/inference_mode.html">Inference Mode</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/maybe_owned.html">MaybeOwned<Tensor></a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/tensor_basics.html">Tensor Basics</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/tensor_creation.html">Tensor Creation API</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/tensor_cuda_stream.html">Tensor CUDA Stream API</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/tensor_indexing.html">Tensor Indexing API</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/versioning.html">Library Versioning</a></li>
</ul>
</div>
</div>
</nav>
<div class="pytorch-container">
<div class="pytorch-page-level-bar" id="pytorch-page-level-bar">
<div class="pytorch-breadcrumbs-wrapper">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="pytorch-breadcrumbs">
<li>
<a href="#">
Docs
</a> >
</li>
<li>PyTorch C++ API</li>
<li class="pytorch-breadcrumbs-aside">
<a href="_sources/index.rst.txt" rel="nofollow"><img src="_static/images/view-page-source-icon.svg"></a>
</li>
</ul>
</div>
</div>
<div class="pytorch-shortcuts-wrapper" id="pytorch-shortcuts-wrapper">
Shortcuts
</div>
</div>
<section data-toggle="wy-nav-shift" id="pytorch-content-wrap" class="pytorch-content-wrap">
<div class="pytorch-content-left">
<!-- Google Tag Manager (noscript) -->
<noscript><iframe src="https://www.googletagmanager.com/ns.html?id="
height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript>
<!-- End Google Tag Manager (noscript) -->
<div class="rst-content">
<div role="main" class="main-content" itemscope="itemscope" itemtype="http://schema.org/Article">
<article itemprop="articleBody" id="pytorch-article" class="pytorch-article">
<div class="section" id="pytorch-c-api">
<h1>PyTorch C++ API<a class="headerlink" href="#pytorch-c-api" title="Permalink to this heading">¶</a></h1>
<p>These pages provide the documentation for the public portions of the PyTorch C++
API. This API can roughly be divided into five parts:</p>
<ul class="simple">
<li><p><strong>ATen</strong>: The foundational tensor and mathematical operation library on which all else is built.</p></li>
<li><p><strong>Autograd</strong>: Augments ATen with automatic differentiation.</p></li>
<li><p><strong>C++ Frontend</strong>: High level constructs for training and evaluation of machine learning models.</p></li>
<li><p><strong>TorchScript</strong>: An interface to the TorchScript JIT compiler and interpreter.</p></li>
<li><p><strong>C++ Extensions</strong>: A means of extending the Python API with custom C++ and CUDA routines.</p></li>
</ul>
<p>Combining, these building blocks form a research and
production ready C++ library for tensor computation and dynamic neural
networks with strong emphasis on GPU acceleration as well as fast CPU
performance. It is currently in use at Facebook in research and
production; we are looking forward to welcome more users of the PyTorch C++ API.</p>
<div class="admonition warning">
<p class="admonition-title">Warning</p>
<p>At the moment, the C++ API should be considered “beta” stability; we may
make major breaking changes to the backend in order to improve the API,
or in service of providing the Python interface to PyTorch, which is our
most stable and best supported interface.</p>
</div>
<div class="section" id="aten">
<h2>ATen<a class="headerlink" href="#aten" title="Permalink to this heading">¶</a></h2>
<p>ATen is fundamentally a tensor library, on top of which almost all other Python
and C++ interfaces in PyTorch are built. It provides a core <code class="docutils literal notranslate"><span class="pre">Tensor</span></code> class,
on which many hundreds of operations are defined. Most of these operations have
both CPU and GPU implementations, to which the <code class="docutils literal notranslate"><span class="pre">Tensor</span></code> class will
dynamically dispatch based on its type. A small example of using ATen could
look as follows:</p>
<div class="highlight-cpp notranslate"><div class="highlight"><pre><span></span><span class="cp">#include</span><span class="w"> </span><span class="cpf"><ATen/ATen.h></span>
<span class="n">at</span><span class="o">::</span><span class="n">Tensor</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">at</span><span class="o">::</span><span class="n">ones</span><span class="p">({</span><span class="mi">2</span><span class="p">,</span><span class="w"> </span><span class="mi">2</span><span class="p">},</span><span class="w"> </span><span class="n">at</span><span class="o">::</span><span class="n">kInt</span><span class="p">);</span>
<span class="n">at</span><span class="o">::</span><span class="n">Tensor</span><span class="w"> </span><span class="n">b</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">at</span><span class="o">::</span><span class="n">randn</span><span class="p">({</span><span class="mi">2</span><span class="p">,</span><span class="w"> </span><span class="mi">2</span><span class="p">});</span>
<span class="k">auto</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">b</span><span class="p">.</span><span class="n">to</span><span class="p">(</span><span class="n">at</span><span class="o">::</span><span class="n">kInt</span><span class="p">);</span>
</pre></div>
</div>
<p>This <code class="docutils literal notranslate"><span class="pre">Tensor</span></code> class and all other symbols in ATen are found in the <code class="docutils literal notranslate"><span class="pre">at::</span></code>
namespace, documented
<a class="reference external" href="https://pytorch.org/cppdocs/api/namespace_at.html#namespace-at">here</a>.</p>
</div>
<div class="section" id="autograd">
<h2>Autograd<a class="headerlink" href="#autograd" title="Permalink to this heading">¶</a></h2>
<p>What we term <em>autograd</em> are the portions of PyTorch’s C++ API that augment the
ATen <code class="docutils literal notranslate"><span class="pre">Tensor</span></code> class with capabilities concerning automatic differentiation.
The autograd system records operations on tensors to form an <em>autograd graph</em>.
Calling <code class="docutils literal notranslate"><span class="pre">backwards()</span></code> on a leaf variable in this graph performs reverse mode
differentiation through the network of functions and tensors spanning the
autograd graph, ultimately yielding gradients. The following example provides
a taste of this interface:</p>
<div class="highlight-cpp notranslate"><div class="highlight"><pre><span></span><span class="cp">#include</span><span class="w"> </span><span class="cpf"><torch/csrc/autograd/variable.h></span>
<span class="cp">#include</span><span class="w"> </span><span class="cpf"><torch/csrc/autograd/function.h></span>
<span class="n">torch</span><span class="o">::</span><span class="n">Tensor</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">torch</span><span class="o">::</span><span class="n">ones</span><span class="p">({</span><span class="mi">2</span><span class="p">,</span><span class="w"> </span><span class="mi">2</span><span class="p">},</span><span class="w"> </span><span class="n">torch</span><span class="o">::</span><span class="n">requires_grad</span><span class="p">());</span>
<span class="n">torch</span><span class="o">::</span><span class="n">Tensor</span><span class="w"> </span><span class="n">b</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">torch</span><span class="o">::</span><span class="n">randn</span><span class="p">({</span><span class="mi">2</span><span class="p">,</span><span class="w"> </span><span class="mi">2</span><span class="p">});</span>
<span class="k">auto</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">b</span><span class="p">;</span>
<span class="n">c</span><span class="p">.</span><span class="n">backward</span><span class="p">();</span><span class="w"> </span><span class="c1">// a.grad() will now hold the gradient of c w.r.t. a.</span>
</pre></div>
</div>
<p>The <code class="docutils literal notranslate"><span class="pre">at::Tensor</span></code> class in ATen is not differentiable by default. To add the
differentiability of tensors the autograd API provides, you must use tensor
factory functions from the <cite>torch::</cite> namespace instead of the <cite>at::</cite> namespace.
For example, while a tensor created with <cite>at::ones</cite> will not be differentiable,
a tensor created with <cite>torch::ones</cite> will be.</p>
</div>
<div class="section" id="c-frontend">
<h2>C++ Frontend<a class="headerlink" href="#c-frontend" title="Permalink to this heading">¶</a></h2>
<p>The PyTorch C++ frontend provides a high level, pure C++ modeling interface for
neural network and general ML(Machine Learning) research and production use cases,
largely following the Python API in design and provided functionality. The C++
frontend includes the following:</p>
<ul class="simple">
<li><p>An interface for defining machine learning models through a hierarchical module system (like <code class="docutils literal notranslate"><span class="pre">torch.nn.Module</span></code>);</p></li>
<li><p>A “standard library” of pre-existing modules for the most common modeling purposes (e.g. convolutions, RNNs, batch normalization etc.);</p></li>
<li><p>An optimization API, including implementations of popular optimizers such as SGD, Adam, RMSprop and others;</p></li>
<li><p>A means of representing datasets and data pipelines, including functionality to load data in parallel over many CPU cores;</p></li>
<li><p>A serialization format for storing and loading checkpoints of a training session (like <code class="docutils literal notranslate"><span class="pre">torch.utils.data.DataLoader</span></code>);</p></li>
<li><p>Automatic parallelization of models onto multiple GPUs (like <code class="docutils literal notranslate"><span class="pre">torch.nn.parallel.DataParallel</span></code>);</p></li>
<li><p>Support code to easily bind C++ models into Python using pybind11;</p></li>
<li><p>Entry points to the TorchScript JIT compiler;</p></li>
<li><p>Helpful utilities to facilitate interfacing with the ATen and Autograd APIs.</p></li>
</ul>
<p>See <a class="reference external" href="https://pytorch.org/cppdocs/frontend.html">this document</a> for a more
detailed description of the C++ frontend. Relevant sections of the <cite>torch::</cite>
namespace related to the C++ Frontend include <a class="reference external" href="https://pytorch.org/cppdocs/api/namespace_torch__nn.html#namespace-torch-nn">torch::nn</a>,
<a class="reference external" href="https://pytorch.org/cppdocs/api/namespace_torch__optim.html#namespace-torch-optim">torch::optim</a>,
<a class="reference external" href="https://pytorch.org/cppdocs/api/namespace_torch__data.html#namespace-torch-data">torch::data</a>,
<a class="reference external" href="https://pytorch.org/cppdocs/api/namespace_torch__serialize.html#namespace-torch-serialize">torch::serialize</a>,
<a class="reference external" href="https://pytorch.org/cppdocs/api/namespace_torch__jit.html#namespace-torch-jit">torch::jit</a>
and <a class="reference external" href="https://pytorch.org/cppdocs/api/namespace_torch__python.html#namespace-torch-python">torch::python</a>.
Examples of the C++ frontend can be found in <a class="reference external" href="https://github.com/pytorch/examples/tree/master/cpp">this repository</a> which is being
expanded on a continuous and active basis.</p>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p>Unless you have a particular reason to constrain yourself exclusively to ATen
or the Autograd API, the C++ frontend is the recommended entry point to the
PyTorch C++ ecosystem. While it is still in beta as we collect user feedback
(from you!), it provides both more functionality and better stability
guarantees than the ATen and Autograd APIs.</p>
</div>
</div>
<div class="section" id="torchscript">
<h2>TorchScript<a class="headerlink" href="#torchscript" title="Permalink to this heading">¶</a></h2>
<p>TorchScript is a representation of a PyTorch model that can be understood,
compiled and serialized by the TorchScript compiler. Fundamentally, TorchScript
is a programming language in its own right. It is a subset of Python using
the PyTorch API. The C++ interface to TorchScript encompasses three primary pieces of
functionality:</p>
<ul class="simple">
<li><p>A mechanism for loading and executing serialized TorchScript models defined in Python;</p></li>
<li><p>An API for defining custom operators that extend the TorchScript standard library of operations;</p></li>
<li><p>Just-in-time compilation of TorchScript programs from C++.</p></li>
</ul>
<p>The first mechanism may be of great interest to you if you would like to define
your models in Python as much as possible, but subsequently export them to C++
for production environments and no-Python inference. You can find out more
about this by following <a class="reference external" href="https://pytorch.org/tutorials/advanced/cpp_export.html">this</a> link. The second
API concerns itself with scenarios in which you would like to extend
TorchScript with custom operators, which can similarly be serialized and
invoked from C++ during inference. Lastly, the <a class="reference external" href="https://pytorch.org/cppdocs/api/function_namespacetorch_1_1jit_1a176d99fd5bf0233119a5f49c07a1d01d.html#exhale-function-namespacetorch-1-1jit-1a176d99fd5bf0233119a5f49c07a1d01d">torch::jit::compile</a>
function may be used to access the TorchScript compiler directly from C++.</p>
</div>
<div class="section" id="c-extensions">
<h2>C++ Extensions<a class="headerlink" href="#c-extensions" title="Permalink to this heading">¶</a></h2>
<p><em>C++ Extensions</em> offer a simple yet powerful way of accessing all of the above
interfaces for the purpose of extending regular Python use-cases of PyTorch.
C++ extensions are most commonly used to implement custom operators in C++ or
CUDA to accelerate research in vanilla PyTorch setups. The C++ extension API
does not add any new functionality to the PyTorch C++ API. Instead, it
provides integration with Python setuptools as well as JIT compilation
mechanisms that allow access to ATen, the autograd and other C++ APIs from
Python. To learn more about the C++ extension API, go through
<a class="reference external" href="https://pytorch.org/tutorials/advanced/cpp_extension.html">this tutorial</a>.</p>
</div>
<div class="section" id="contents">
<h2>Contents<a class="headerlink" href="#contents" title="Permalink to this heading">¶</a></h2>
<div class="toctree-wrapper compound">
<ul>
<li class="toctree-l1"><a class="reference internal" href="installing.html">Installing C++ Distributions of PyTorch</a><ul>
<li class="toctree-l2"><a class="reference internal" href="installing.html#minimal-example">Minimal Example</a></li>
<li class="toctree-l2"><a class="reference internal" href="installing.html#system-requirements">System Requirements</a></li>
<li class="toctree-l2"><a class="reference internal" href="installing.html#visual-studio-extension">Visual Studio Extension</a></li>
<li class="toctree-l2"><a class="reference internal" href="installing.html#support">Support</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="frontend.html">The C++ Frontend</a><ul>
<li class="toctree-l2"><a class="reference internal" href="frontend.html#description">Description</a></li>
<li class="toctree-l2"><a class="reference internal" href="frontend.html#end-to-end-example">End-to-end example</a></li>
<li class="toctree-l2"><a class="reference internal" href="frontend.html#philosophy">Philosophy</a></li>
<li class="toctree-l2"><a class="reference internal" href="frontend.html#installation">Installation</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="api/library_root.html">Library API</a><ul>
<li class="toctree-l2"><a class="reference internal" href="api/library_root.html#class-hierarchy">Class Hierarchy</a></li>
<li class="toctree-l2"><a class="reference internal" href="api/library_root.html#file-hierarchy">File Hierarchy</a></li>
<li class="toctree-l2"><a class="reference internal" href="api/library_root.html#full-api">Full API</a></li>
</ul>
</li>
</ul>
</div>
<div class="toctree-wrapper compound">
<p class="caption" role="heading"><span class="caption-text">Notes</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="notes/faq.html">FAQ</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/inference_mode.html">Inference Mode</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/maybe_owned.html">MaybeOwned<Tensor></a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/tensor_basics.html">Tensor Basics</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/tensor_creation.html">Tensor Creation API</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/tensor_cuda_stream.html">Tensor CUDA Stream API</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/tensor_indexing.html">Tensor Indexing API</a></li>
<li class="toctree-l1"><a class="reference internal" href="notes/versioning.html">Library Versioning</a></li>
</ul>
</div>
</div>
</div>
<div class="section" id="indices-and-tables">
<h1>Indices and tables<a class="headerlink" href="#indices-and-tables" title="Permalink to this heading">¶</a></h1>
<ul class="simple">
<li><p><a class="reference internal" href="genindex.html"><span class="std std-ref">Index</span></a></p></li>
<li><p><a class="reference internal" href="py-modindex.html"><span class="std std-ref">Module Index</span></a></p></li>
<li><p><a class="reference internal" href="search.html"><span class="std std-ref">Search Page</span></a></p></li>
</ul>
<div class="section" id="acknowledgements">
<h2>Acknowledgements<a class="headerlink" href="#acknowledgements" title="Permalink to this heading">¶</a></h2>
<p>This documentation website for the PyTorch C++ universe has been enabled by the
<a class="reference external" href="https://github.com/svenevs/exhale/">Exhale</a> project and generous investment
of time and effort by its maintainer, <a class="reference external" href="https://github.com/svenevs/">svenevs</a>.
We thank Stephen for his work and his efforts providing help with the PyTorch C++ documentation.</p>
</div>
</div>
</article>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="installing.html" class="btn btn-neutral float-right" title="Installing C++ Distributions of PyTorch" accesskey="n" rel="next">Next <img src="_static/images/chevron-right-orange.svg" class="next-page"></a>
</div>
<hr>
<div role="contentinfo">
<p>
© Copyright 2024, PyTorch Contributors.
</p>
</div>
<div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</div>
</footer>
</div>
</div>
<div class="pytorch-content-right" id="pytorch-content-right">
<div class="pytorch-right-menu" id="pytorch-right-menu">
<div class="pytorch-side-scroll" id="pytorch-side-scroll-right">
<ul>
<li><a class="reference internal" href="#">PyTorch C++ API</a><ul>
<li><a class="reference internal" href="#aten">ATen</a></li>
<li><a class="reference internal" href="#autograd">Autograd</a></li>
<li><a class="reference internal" href="#c-frontend">C++ Frontend</a></li>
<li><a class="reference internal" href="#torchscript">TorchScript</a></li>
<li><a class="reference internal" href="#c-extensions">C++ Extensions</a></li>
<li><a class="reference internal" href="#contents">Contents</a><ul>
</ul>
</li>
</ul>
</li>
<li><a class="reference internal" href="#indices-and-tables">Indices and tables</a><ul>
<li><a class="reference internal" href="#acknowledgements">Acknowledgements</a></li>
</ul>
</li>
</ul>
</div>
</div>
</div>
</section>
</div>
<script type="text/javascript" id="documentation_options" data-url_root="./" src="_static/documentation_options.js"></script>
<script data-url_root="./" id="documentation_options" src="_static/documentation_options.js"></script>
<script src="_static/jquery.js"></script>
<script src="_static/underscore.js"></script>
<script src="_static/_sphinx_javascript_frameworks_compat.js"></script>
<script src="_static/doctools.js"></script>
<script src="_static/sphinx_highlight.js"></script>
<script src="_static/collapsible-lists/js/CollapsibleLists.compressed.js"></script>
<script src="_static/collapsible-lists/js/apply-collapsible-lists.js"></script>
<script type="text/javascript" src="_static/js/vendor/popper.min.js"></script>
<script type="text/javascript" src="_static/js/vendor/bootstrap.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/list.js/1.5.0/list.min.js"></script>
<script type="text/javascript" src="_static/js/theme.js"></script>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
<!-- Begin Footer -->
<div class="container-fluid docs-tutorials-resources" id="docs-tutorials-resources">
<div class="container">
<div class="row">
<div class="col-md-4 text-center">
<h2>Docs</h2>
<p>Access comprehensive developer documentation for PyTorch</p>
<a class="with-right-arrow" href="https://pytorch.org/docs/stable/index.html">View Docs</a>
</div>
<div class="col-md-4 text-center">
<h2>Tutorials</h2>
<p>Get in-depth tutorials for beginners and advanced developers</p>
<a class="with-right-arrow" href="https://pytorch.org/tutorials">View Tutorials</a>
</div>
<div class="col-md-4 text-center">
<h2>Resources</h2>
<p>Find development resources and get your questions answered</p>
<a class="with-right-arrow" href="https://pytorch.org/resources">View Resources</a>
</div>
</div>
</div>
</div>
<footer class="site-footer">
<div class="container footer-container">
<div class="footer-logo-wrapper">
<a href="https://pytorch.org/" class="footer-logo"></a>
</div>
<div class="footer-links-wrapper">
<div class="footer-links-col">
<ul>
<li class="list-title"><a href="https://pytorch.org/">PyTorch</a></li>
<li><a href="https://pytorch.org/get-started">Get Started</a></li>
<li><a href="https://pytorch.org/features">Features</a></li>
<li><a href="https://pytorch.org/ecosystem">Ecosystem</a></li>
<li><a href="https://pytorch.org/blog/">Blog</a></li>
<li><a href="https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md">Contributing</a></li>
</ul>
</div>
<div class="footer-links-col">
<ul>
<li class="list-title"><a href="https://pytorch.org/resources">Resources</a></li>
<li><a href="https://pytorch.org/tutorials">Tutorials</a></li>
<li><a href="https://pytorch.org/docs/stable/index.html">Docs</a></li>
<li><a href="https://discuss.pytorch.org" target="_blank">Discuss</a></li>
<li><a href="https://github.com/pytorch/pytorch/issues" target="_blank">Github Issues</a></li>
<li><a href="https://pytorch.org/assets/brand-guidelines/PyTorch-Brand-Guidelines.pdf" target="_blank">Brand Guidelines</a></li>
</ul>
</div>
<div class="footer-links-col">
<ul>
<li class="list-title">Stay up to date</li>
<li><a href="https://www.facebook.com/pytorch" target="_blank">Facebook</a></li>
<li><a href="https://twitter.com/pytorch" target="_blank">Twitter</a></li>
<li><a href="https://www.youtube.com/pytorch" target="_blank">YouTube</a></li>
<li><a href="https://www.linkedin.com/company/pytorch" target="_blank">LinkedIn</a></li>
</ul>
</div>
<div class="footer-links-col">
<ul>
<li class="list-title">PyTorch Podcasts</li>
<li><a href="https://open.spotify.com/show/6UzHKeiy368jKfQMKKvJY5" target="_blank">Spotify</a></li>
<li><a href="https://podcasts.apple.com/us/podcast/pytorch-developer-podcast/id1566080008" target="_blank">Apple</a></li>
<li><a href="https://www.google.com/podcasts?feed=aHR0cHM6Ly9mZWVkcy5zaW1wbGVjYXN0LmNvbS9PQjVGa0lsOA%3D%3D" target="_blank">Google</a></li>
<li><a href="https://music.amazon.com/podcasts/7a4e6f0e-26c2-49e9-a478-41bd244197d0/PyTorch-Developer-Podcast?" target="_blank">Amazon</a></li>
</ul>
</div>
</div>
<div class="privacy-policy">
<ul>
<li class="privacy-policy-links"><a href="https://www.linuxfoundation.org/terms/" target="_blank">Terms</a></li>
<li class="privacy-policy-links">|</li>
<li class="privacy-policy-links"><a href="https://www.linuxfoundation.org/privacy-policy/" target="_blank">Privacy</a></li>
</ul>
</div>
<div class="copyright">
<p>© Copyright The Linux Foundation. The PyTorch Foundation is a project of The Linux Foundation.
For web site terms of use, trademark policy and other policies applicable to The PyTorch Foundation please see
<a href="https://www.linuxfoundation.org/policies/">www.linuxfoundation.org/policies/</a>. The PyTorch Foundation supports the PyTorch open source
project, which has been established as PyTorch Project a Series of LF Projects, LLC. For policies applicable to the PyTorch Project a Series of LF Projects, LLC,
please see <a href="https://www.lfprojects.org/policies/">www.lfprojects.org/policies/</a>.</p>
</div>
</div>
</footer>
<div class="cookie-banner-wrapper">
<div class="container">
<p class="gdpr-notice">To analyze traffic and optimize your experience, we serve cookies on this site. By clicking or navigating, you agree to allow our usage of cookies. As the current maintainers of this site, Facebook’s Cookies Policy applies. Learn more, including about available controls: <a href="https://www.facebook.com/policies/cookies/">Cookies Policy</a>.</p>
<img class="close-button" src="_static/images/pytorch-x.svg">
</div>
</div>
<!-- End Footer -->
<!-- Begin Mobile Menu -->
<div class="mobile-main-menu">
<div class="container-fluid">
<div class="container">
<div class="mobile-main-menu-header-container">
<a class="header-logo" href="https://pytorch.org/" aria-label="PyTorch"></a>
<a class="main-menu-close-button" href="#" data-behavior="close-mobile-menu"></a>
</div>
</div>
</div>
<div class="mobile-main-menu-links-container">
<div class="main-menu">
<ul>
<li class="resources-mobile-menu-title">
<a>Learn</a>
</li>
<ul class="resources-mobile-menu-items">
<li>
<a href="https://pytorch.org/get-started">Get Started</a>
</li>
<li>
<a href="https://pytorch.org/tutorials">Tutorials</a>
</li>
<li>
<a href="https://pytorch.org/tutorials/beginner/basics/intro.html">Learn the Basics</a>
</li>
<li>
<a href="https://pytorch.org/tutorials/recipes/recipes_index.html">PyTorch Recipes</a>
</li>
<li>
<a href="https://pytorch.org/tutorials/beginner/introyt.html">Introduction to PyTorch - YouTube Series</a>
</li>
</ul>
<li class="resources-mobile-menu-title">
<a>Ecosystem</a>
</li>
<ul class="resources-mobile-menu-items">
<li>
<a href="https://pytorch.org/ecosystem">Tools</a>
</li>
<li>
<a href="https://pytorch.org/#community-module">Community</a>
</li>
<li>
<a href="https://discuss.pytorch.org/">Forums</a>
</li>
<li>
<a href="https://pytorch.org/resources">Developer Resources</a>
</li>
<li>
<a href="https://pytorch.org/ecosystem/contributor-awards-2023">Contributor Awards - 2023</a>
</li>
</ul>
<li class="resources-mobile-menu-title">
<a>Edge</a>
</li>
<ul class="resources-mobile-menu-items">
<li>
<a href="https://pytorch.org/edge">About PyTorch Edge</a>
</li>
<li>
<a href="https://pytorch.org/executorch-overview">ExecuTorch</a>
</li>
</ul>
<li class="resources-mobile-menu-title">
<a>Docs</a>
</li>
<ul class="resources-mobile-menu-items">
<li>
<a href="https://pytorch.org/docs/stable/index.html">PyTorch</a>
</li>
<li>
<a href="https://pytorch.org/pytorch-domains">PyTorch Domains</a>
</li>
</ul>
<li class="resources-mobile-menu-title">
<a>Blog & News</a>
</li>
<ul class="resources-mobile-menu-items">
<li>
<a href="https://pytorch.org/blog/">PyTorch Blog</a>
</li>
<li>
<a href="https://pytorch.org/community-blog">Community Blog</a>
</li>
<li>
<a href="https://pytorch.org/videos">Videos</a>
</li>
<li>
<a href="https://pytorch.org/community-stories">Community Stories</a>
</li>
<li>
<a href="https://pytorch.org/events">Events</a>
</li>
</ul>
<li class="resources-mobile-menu-title">
<a>About</a>
</li>
<ul class="resources-mobile-menu-items">
<li>
<a href="https://pytorch.org/foundation">PyTorch Foundation</a>
</li>
<li>
<a href="https://pytorch.org/governing-board">Governing Board</a>
</li>
</ul>
</ul>
</div>
</div>
</div>
<!-- End Mobile Menu -->
<script type="text/javascript" src="_static/js/vendor/anchor.min.js"></script>
<script type="text/javascript">
$(document).ready(function() {
mobileMenu.bind();
mobileTOC.bind();
pytorchAnchors.bind();
sideMenus.bind();
scrollToAnchor.bind();
highlightNavigation.bind();
mainMenuDropdown.bind();
filterTags.bind();
// Add class to links that have code blocks, since we cannot create links in code blocks
$("article.pytorch-article a span.pre").each(function(e) {
$(this).closest("a").addClass("has-code");
});
})
</script>
</body>
</html>