-
Notifications
You must be signed in to change notification settings - Fork 498
/
Copy pathtest_serialize.py
185 lines (155 loc) · 6.49 KB
/
test_serialize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-strict
import unittest
from typing import List
from executorch.exir._serialize.data_serializer import (
DataPayload,
DataSerializer,
TensorEntry,
TensorLayout,
)
from executorch.exir._serialize.padding import aligned_size
from executorch.exir.schema import ScalarType
from executorch.extension.flat_tensor.serialize.flat_tensor_schema import TensorMetadata
from executorch.extension.flat_tensor.serialize.serialize import (
_deserialize_to_flat_tensor,
FlatTensorConfig,
FlatTensorHeader,
FlatTensorSerializer,
)
# Test artifacts.
TEST_TENSOR_BUFFER: List[bytes] = [b"\x11" * 4, b"\x22" * 32]
TEST_TENSOR_MAP = {
"fqn1": TensorEntry(
buffer_index=0,
layout=TensorLayout(
scalar_type=ScalarType.FLOAT,
sizes=[1, 1, 1],
dim_order=[0, 1, 2],
),
),
"fqn2": TensorEntry(
buffer_index=0,
layout=TensorLayout(
scalar_type=ScalarType.FLOAT,
sizes=[1, 1, 1],
dim_order=[0, 1, 2],
),
),
"fqn3": TensorEntry(
buffer_index=1,
layout=TensorLayout(
scalar_type=ScalarType.INT,
sizes=[2, 2, 2],
dim_order=[0, 1],
),
),
}
TEST_DATA_PAYLOAD = DataPayload(
buffers=TEST_TENSOR_BUFFER,
fqn_to_tensor=TEST_TENSOR_MAP,
)
class TestSerialize(unittest.TestCase):
# TODO(T211851359): improve test coverage.
def check_tensor_metadata(
self, tensor_layout: TensorLayout, tensor_metadata: TensorMetadata
) -> None:
self.assertEqual(tensor_layout.scalar_type, tensor_metadata.scalar_type)
self.assertEqual(tensor_layout.sizes, tensor_metadata.sizes)
self.assertEqual(tensor_layout.dim_order, tensor_metadata.dim_order)
def test_serialize(self) -> None:
config = FlatTensorConfig()
serializer: DataSerializer = FlatTensorSerializer(config)
serialized_data = bytes(serializer.serialize(TEST_DATA_PAYLOAD))
# Check header.
header = FlatTensorHeader.from_bytes(
serialized_data[0 : FlatTensorHeader.EXPECTED_LENGTH]
)
self.assertTrue(header.is_valid())
# Header is aligned to config.segment_alignment, which is where the flatbuffer starts.
self.assertEqual(
header.flatbuffer_offset,
aligned_size(FlatTensorHeader.EXPECTED_LENGTH, config.segment_alignment),
)
# Flatbuffer is non-empty.
self.assertTrue(header.flatbuffer_size > 0)
# Segment base offset is aligned to config.segment_alignment.
expected_segment_base_offset = aligned_size(
header.flatbuffer_offset + header.flatbuffer_size, config.segment_alignment
)
self.assertTrue(header.segment_base_offset, expected_segment_base_offset)
# TEST_TENSOR_BUFFER is aligned to config.segment_alignment.
expected_segment_data_size = aligned_size(
sum(len(buffer) for buffer in TEST_TENSOR_BUFFER), config.segment_alignment
)
self.assertEqual(header.segment_data_size, expected_segment_data_size)
# Confirm the flatbuffer magic is present.
self.assertEqual(
serialized_data[
header.flatbuffer_offset + 4 : header.flatbuffer_offset + 8
],
b"FT01",
)
# Check flat tensor data.
flat_tensor_bytes = serialized_data[
header.flatbuffer_offset : header.flatbuffer_offset + header.flatbuffer_size
]
flat_tensor = _deserialize_to_flat_tensor(flat_tensor_bytes)
self.assertEqual(flat_tensor.version, 0)
self.assertEqual(flat_tensor.tensor_alignment, config.tensor_alignment)
tensors = flat_tensor.tensors
self.assertEqual(len(tensors), 3)
self.assertEqual(tensors[0].fully_qualified_name, "fqn1")
self.check_tensor_metadata(TEST_TENSOR_MAP["fqn1"].layout, tensors[0])
self.assertEqual(tensors[0].segment_index, 0)
self.assertEqual(tensors[0].offset, 0)
self.assertEqual(tensors[1].fully_qualified_name, "fqn2")
self.check_tensor_metadata(TEST_TENSOR_MAP["fqn2"].layout, tensors[1])
self.assertEqual(tensors[1].segment_index, 0)
self.assertEqual(tensors[1].offset, 0)
self.assertEqual(tensors[2].fully_qualified_name, "fqn3")
self.check_tensor_metadata(TEST_TENSOR_MAP["fqn3"].layout, tensors[2])
self.assertEqual(tensors[2].segment_index, 0)
self.assertEqual(tensors[2].offset, config.tensor_alignment)
segments = flat_tensor.segments
self.assertEqual(len(segments), 1)
self.assertEqual(segments[0].offset, 0)
self.assertEqual(segments[0].size, config.tensor_alignment * 3)
# Length of serialized_data matches segment_base_offset + segment_data_size.
self.assertEqual(
header.segment_base_offset + header.segment_data_size, len(serialized_data)
)
self.assertTrue(segments[0].size <= header.segment_data_size)
# Check the contents of the segment. Expecting two tensors from
# TEST_TENSOR_BUFFER = [b"\x11" * 4, b"\x22" * 32]
segment_data = serialized_data[
header.segment_base_offset : header.segment_base_offset + segments[0].size
]
# Tensor: b"\x11" * 4
t0_start = 0
t0_len = len(TEST_TENSOR_BUFFER[0])
t0_end = t0_start + aligned_size(t0_len, config.tensor_alignment)
self.assertEqual(
segment_data[t0_start : t0_start + t0_len], TEST_TENSOR_BUFFER[0]
)
padding = b"\x00" * (t0_end - t0_len)
self.assertEqual(segment_data[t0_start + t0_len : t0_end], padding)
# Tensor: b"\x22" * 32
t1_start = t0_end
t1_len = len(TEST_TENSOR_BUFFER[1])
t1_end = t1_start + aligned_size(t1_len, config.tensor_alignment)
self.assertEqual(
segment_data[t1_start : t1_start + t1_len],
TEST_TENSOR_BUFFER[1],
)
padding = b"\x00" * (t1_end - (t1_len + t1_start))
self.assertEqual(segment_data[t1_start + t1_len : t1_start + t1_end], padding)
# Check length of the segment is expected.
self.assertEqual(
segments[0].size, aligned_size(t1_end, config.segment_alignment)
)
self.assertEqual(segments[0].size, header.segment_data_size)