Skip to content

How to get the jacobian matrix in GCNs? #1113

Open
@pcheng2

Description

Hi, I'm trying to use jacrev to get the jacobians in graph convolution networks, but it seems like I've called the function incorrectly.

import torch.nn.functional as F
import functorch
import torch_geometric
from torch_geometric.data import Data

class GCN(torch.nn.Module):
    def __init__(self, input_dim, hidden_dim, output_dim):
        super().__init__()
        torch.manual_seed(12345)
        
        self.conv1 = torch_geometric.nn.GCNConv(input_dim, hidden_dim, aggr='add')
        self.conv2 = torch_geometric.nn.GCNConv(hidden_dim, output_dim, aggr='add')
        
    def forward(self, x, edge_index):
        x = self.conv1(x, edge_index)
        x = x.relu()
        x = F.dropout(x, p=0.5, training=self.training)
        x = self.conv2(x, edge_index)
        return x

adj_matrix = torch.ones(3,3)
edge_index = adj_matrix .nonzero().t().contiguous()

gcn = GCN(input_dim=5, hidden_dim=64, output_dim=5)

N = (128,3, 5) 

x =torch.randn(N, requires_grad=True) # batch_size:128, node_num:10 , node_feature: 5 

graph = Data(x=x, edge_index=edge_index)

gcn_out = gcn(graph.x, graph.edge_index)

Then I try to compute the jacobians of the input data x based on the tutorial,

jacobian = functorch.vmap(functorch.jacrev(gcn))(graph.x, graph.edge_index)

and get the following error message:

ValueError: vmap: Expected all tensors to have the same size in the mapped dimension, got sizes [128, 2] for the mapped dimension

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions