-
Notifications
You must be signed in to change notification settings - Fork 699
/
Copy pathadaptive_avg_pool2d_test.py
64 lines (49 loc) · 2.14 KB
/
adaptive_avg_pool2d_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# Copyright (c) Glow Contributors. See CONTRIBUTORS file.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pyre-ignore-all-errors
from __future__ import absolute_import, division, print_function, unicode_literals
import torch
import torch.nn.functional as F
from glow.glow.torch_glow.tests.tests import utils
class SimpleAdapativeAvgPool2dModule(torch.nn.Module):
def __init__(self, output_size):
super(SimpleAdapativeAvgPool2dModule, self).__init__()
self.output_size = output_size
def forward(self, inputs):
return F.adaptive_avg_pool2d(inputs, self.output_size)
class TestAdaptiveAvgPool2d(utils.TorchGlowTestCase):
def test_adaptive_avg_pool2d_basic(self):
"""Basic test of PyTorch adaptive_avg_pool2d Node."""
inputs = torch.randn(3, 6, 14, 14)
utils.run_comparison_tests(
SimpleAdapativeAvgPool2dModule((5, 5)),
inputs,
fusible_ops={"aten::adaptive_avg_pool2d"},
)
def test_adaptive_avg_pool2d_nonsquare_inputs(self):
"""Test of PyTorch adaptive_avg_pool2d Node with non-square inputs."""
inputs = torch.randn(3, 6, 13, 14)
utils.run_comparison_tests(
SimpleAdapativeAvgPool2dModule((3, 3)),
inputs,
fusible_ops={"aten::adaptive_avg_pool2d"},
)
def test_adaptive_avg_pool2d_nonsquare_outputs(self):
"""Test of PyTorch adaptive_avg_pool2d Node with non-square outputs."""
inputs = torch.randn(3, 6, 14, 14)
utils.run_comparison_tests(
SimpleAdapativeAvgPool2dModule((5, 3)),
inputs,
fusible_ops={"aten::adaptive_avg_pool2d"},
)